Introduction ... 3
 What’s the purpose/goal of all this? ... 3
 What is the Neuro-Imaging Laboratory? .. 3
 How is the Neuro-Imaging Laboratory subdivided? ... 3
 What WUSM resources are we planning to use? ... 4
About the CNDA ... 5
 What does using the CNDA provide for me? .. 5
 How do I get a CNDA account? .. 5
 How is data organized within the CNDA? ... 6
Getting my data into the CNDA ... 8
 What is the CNDA Prearchive? ... 8
 How do I send my data directly from the scanner to the CNDA? .. 8
 How do I upload data from my desktop computer or the IAC SunOS/Solaris computers to the CNDA? .. 8
 How do I move my image data from the prearchive into a CNDA project? 8
Using CNDA pipelines .. 13
 What are CNDA pipelines? ... 13
 How do I associate a CNDA pipeline with a project? .. 13
 How do I use a CNDA pipeline for preprocessing a set of data? ... 21
Who do I contact to get help with the CNDA? ... 21
Using NIL maintained resources for analysis outside of the CNDA ... 22
 What is a NIL Un*x account and how do I get one? .. 22
 How do I set up the VPN connection to access the NIL maintained computer systems? 22
 Using Cisco VPN with Max OS X Snow Leopard .. 24
 How do I change my VPN password? ... 24
 What NIL maintained CPUs should I use? .. 24
 How do I access NIL systems? .. 24
 How do I use VNC to access NIL Systems? ... 25
 What VNC Client software should I use on my desktop? .. 25
 How do I start a VNC Server on NIL systems? ... 25
 How do I find my VNC Server session number if I forget it? .. 27
 How do I connect to the VNC Server that I’ve started? .. 27
 How do I run FIDL on the NIL maintained machines? ... 28
 How do I run background jobs using the Sun Grid Engine? ... 28
Gettting data out of the CNDA for further analysis ... 29
 Where should I store my data for access by NIL maintained computer systems? 29
 How do I retrieve/download data from the CNDA using the standard CNDA Web interface? 29
 How do I retrieve/download data from the CNDA using URI specifications from a browser? 30
 How do I retrieve/download data from the CNDA using command line tools? 38
Using Neuro-Imaging Laboratory Resources to Store, Preprocess, and Analyze fMRI Data

Introduction

What’s the purpose/goal of all this?

The goal is to make available to fMRI researchers in the Psychology Department the computing and data storage resources of the Neuro-Imaging Laboratory (NIL, http://www.nil.wustl.edu). Using these resources will hopefully better integrate the neuroimaging researchers in the Psychology Department with medical school neuroimaging researchers and avoid duplication of efforts with regard to software development, software maintenance, and hardware maintenance.

What is the Neuro-Imaging Laboratory?

The Neuro-Imaging Laboratory is part of the Mallinckrodt Institute of Radiology at the Washington University School of Medicine. Within the Mallinckrodt Institute of Radiology, the Radiological Sciences Division is the division tasked with the development of basic sciences associated with radiology. The Radiological Sciences Division is divided into multiple laboratories each devoted to a different basic radiological science. The Neuro-Imaging Laboratory is one of those laboratories.

How is the Neuro-Imaging Laboratory subdivided?

The Neuro-Imaging Laboratory is itself further divided into sub-groups.

Neuroinformatics Research Group

One such group is the Neuroinformatics Research Group (NRG). The NRG is focused on the integration, mining, and sharing of data across the neurosciences. Neuroinformatics is the application of information science to neuroscience. Information science is concerned with the analysis, collection, manipulation, storage, retrieval, and dissemination of information. So, roughly speaking, the neuroinformatics group is all about providing resources and techniques for better using computers (software and hardware) for storage, sharing, and analysis of neuroimaging data.

The NRG hosts a data archive for managing and sharing study data collected by the Washington University neuroimaging community. This archive is called the Central Neuro-Imaging Data Archive (CNDA).

Computer Support Group

Another subdivision of the Neuro-Imaging Laboratory is the Computer Support Group (CSG). The CSG is the computer systems administration group within NIL. As its name implies, the CSG provides computer support to the other groups within NIL. The CSG folks are the ones you would turn to in order to get new accounts created, get access to the computers that control the scanners, get access to NIL computer systems in general, get access to NIL computer systems from you home, etc.

In particular, they are responsible for:
• Maintaining and granting access to the Virtual Private Network (VPN) to which you will need to get access in order to use any NIL computer systems

• Maintaining and granting access to the PCs in the scanner rooms (other than the computers that directly control the scanners)

• System administration of NIL Un*x systems, including granting Un*x accounts.¹

RIIS

The RIIS group is responsible for maintaining and granting access to the computers that actually control the scanners. The RIIS is independent from the CSG. The scanner control computers are maintained separately so that appropriate billing can be done for any hours used on the scanners.

What WUSM resources are we planning to use?

• We will use the Central Neuro-Imaging Data Archive (CNDA) for storage and long-term archiving of “raw” fMRI scanning data. In this context, “raw” refers to data that is retrieved directly from the MRI scanners and has not been through any preprocessing other than that which might have been done by the scanner.

• We will use the CNDA’s pipeline mechanism for performing standardized preprocessing of fMRI data. In particular standardized BOLD preprocessing.

• We will use computers maintained by the Computer Support Group (CSG), which is part of the NIL, to carry out a significant amount of the analysis (after preprocessing) of fMRI data. You will not be limited to using only these NIL maintained computers. You can download the preprocessed data to other computers, including your own desktop system², for analysis. This will be useful if the analysis software that you want to use is not available on the NIL/CSG maintained machines. However, the NIL maintained machines should have the most up-to-date and maintained versions of software like FIDL available.³

• We will use NIL/CSG maintained disk space for storage of data during analysis. This space is referred to as the Bluearc space.

¹ Un*x system include systems operating the Linux and SunOS/Solaris operating systems. UNIX is an officially trademarked term owned by The Open Group. “Un*x” is often used to indicate all operating systems similar to UNIX without violating any trademarks.

² In this case, and for the rest of this document, the term “desktop computer” or “desktop system” is not intended to be limited to a desktop computer to the exclusion of laptops, notebooks, or netbooks.

³ Currently, the NIL maintained computers we have been assigned are running under the Solaris operating system. There are plans to make use of Linux-based NIL maintained systems. Once we are using these Linux-based machines, then other “standard” software packages for fMRI analysis (e.g. FreeSurfer, FSL, SPM, etc.) should also be made available on these machines.
About the CNDA

What does using the CNDA provide for me?

The Central Neuroimaging Data Archive (CNDA) is “a resource for managing study data collected by the Washington University neuroimaging community. It includes a secure database, automated pipelines for processing managed data, and tools for exploring and accessing the data.” The primary mechanism for accessing the CNDA is via the CNDA website (https://cnda.wustl.edu).

In addition to providing secure, backed-up, web accessible, sharable archiving of scanning data, the CNDA also makes available standardized pre-processing pipelines. These pre-processing pipelines are analogous to (indeed based upon) the pre-processing scripts that are currently used on a number of Unix based servers in the Psychology Department. Using the CNDA pipelines for preprocessing will help ensure that we will always be using the latest changes and improvements to the standardized fMRI preprocessing.

When the “raw” data has been successfully preprocessed, the resulting files are automatically stored in the CNDA. These “Reconstructions”, as they are referred to in the CNDA, are then available for downloading from the CNDA. The downloading can be done via the CNDA’s web-based interface or by using command line tools that are available from the CNDA. Using the command line tools allows you to create scripts to download large quantities of data (that may take hours to download) and then run those scripts as “batch” jobs that are left running unattended over several hours or over night.

How do I get a CNDA account?

To get a CNDA account, use a web browser and visit https://cnda.wustl.edu. Below the User and Password fields and the Login button, is a link labeled “Register”. Follow that link to fill out and submit the New User Registration form. Once your account is created you should receive an email from the Neuroinformatics Research Group (NRG) letting you know that your account has been successfully created. The email you receive confirming your account creation should look similar to the following:

```
From: nrgtech@npg.wustl.edu
Date: Thursday, 09 July 2009 14:59
To: tbbrown@wustl.edu
Subject: Welcome to CNDA

Welcome to the CNDA Web Archive!
You can now log on to the CNDA at: https://cnda.wustl.edu
Your username is: tbb
For support, contact the CNDA Management
```

Note that the support contact link is to the email address nrgtech@npg.wustl.edu. That is where you should send email to initiate support requests.

4 From the CNDA website.
How is data organized within the CNDA?

The primary unit of organization of data within the CNDA is the Project. All your scanning data will be associated with a particular CNDA project. Typically you will create a new project for each study you perform.

After logging in to the CNDA, you should be presented with the CNDA Home page for your CNDA account. Your CNDA Home page will look similar to Figure 1. Notice the list of Projects near the bottom of the page. These are the projects for which you have some defined role within the CNDA. Depending on the role you are given in a project (owner, member, or collaborator) and the project accessibility levels defined by the project owner) you may have full access to the project to upload new data, submit pipeline jobs, or even delete project data, or you may only have access to view the project data. Each project has a unique Project ID. The project IDs visible in Figure 1 are: NP891, NP896, and TBBKOJICOPY.

The next major unit of data organization within the CNDA is the Subject. A project can consist of multiple Subjects. Subjects are identified by a Subject ID. Data for subjects is further organized into 1 or more MR Sessions for the subject. An MR Session is identified by an MR ID and consists of a set of scans that came from one scanning session with the Subject.

The Subject ID and the MR ID can at times be the same text. This can possibly lead to some confusion. For example, a subject with the Subject ID of ab30491 can also have a session with...
the MR ID of ab30491. It is important when interacting with the CNDA to be aware of not only the particular ID that you are specifying in an operation, but also what type of ID it is that you are specifying.

Subjects can be shared across multiple Projects. Each subject should initially be associated with only one project. Then the owner of that project can share the subject with other CNDA projects.

If you select a project from the list of projects on your CNDA Home page, you will see the project page for the selected project. The project page will look similar to Figure 2. Notice that the lower portion of the page now has a set of tabs labeled Subjects and MR Sessions. You can select data to work with by Subject ID or by MR Session ID. Selecting the Subjects tab lists all subjects in the project organized by Subject ID; selecting the MR Sessions tab lists all the MR sessions for the project organized by MR ID.

Figure 2: An Example CNDA Project Page
Getting my data into the CNDA

What is the CNDA Prearchive?

The CNDA prearchive is a temporary storage location for your image data. Images in the prearchive have not officially been placed into the real archive. In short, the prearchive is a temporary holding area for your image data. This gives you a chance to review the details of images you plan to place in the CNDA before placing the images directly in the archive. It is generally a good idea to place your image data in the prearchive first and then inspect/validate the data before transferring it to the archive proper.

The techniques described below will move image data into the prearchive either directly from the scanner or from another computer. Subsequent sections will cover how to transfer data from the prearchive into the archive.

How do I send my data directly from the scanner to the CNDA?

The image browser that is part of the scanner software has a built in option for transferring scanner data to the CNDA prearchive. Open an image browser and click on the folder containing the image data to be transferred. Select Transfer → Send To → CNDA.

TBD: Need to revisit a scanning session to view the scanner software and add some more details to this section.

In particular, when registering a subject (before scanning) you will need to include a line in the “Comments” field of the following form:

 Project:NP###, Session:#####, Subject:####

Without this information, when the data is sent to the CNDA prearchive it will not be associated with your project so that you can see it and import it into the archive proper.

Need to find out and better document exactly where the “Comments” field is and emphasize that this has to be properly filled out before scanning actually occurs.

How do I upload data from my desktop computer or the IAC SunOS/Solaris computers to the CNDA?

There are several different ways to upload data to the CNDA. The first is to use what is referred to in the CNDA as “Option 1: Compressed upload”. This is likely to be the most efficient uploading mechanism and is described here.

If you have raw image data stored either on your desktop computer or on the IAC SunOS/Solaris computers that you want to upload to the CNDA using the Compressed upload option, you must first make sure that all image files that you want to upload are available in uncompressed DICOM format. Note that if you have already run some analysis or preprocessing software using the images, the software you used may have compressed the DICOM images for you and

5 ECAT format is also supported for PET images.
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data

Author: Timothy B. Brown

Date: 26 Apr 2010

left only compressed versions behind. It is important to make sure that before you upload the DICOM images, they are first uncompressed.\(^6\)

Next all the DICOM format image files that you want to upload must be placed in a compressed archive file. One acceptable format for the archive to be uploaded is the ZIP file format which is both a data archive format and a data compression format.\(^7\) Files in this format generally have a .\text{zip} file extension. Another acceptable format for the archive to be uploaded is the combined tar'd and GNU Zip (gzip) format, which is generally created by using the tar tool (which derives its name from \textit{tape archive}) to create an archive file with a .\text{tar} extension and then using gzip to compress the tar file resulting in a file with the multipart extension .\text{tar.gz}.

Once you have a compressed archive file containing your DICOM format images (.\text{zip} or .\text{tar.gz}), then you can begin the upload process by selecting the Upload \(
ightarrow\) Images menu at the top of your CNDA Home page.

On the CNDA Upload page under “Option 1: Compressed upload” select the project to which the image files should be uploaded. You should see a Project label next to a pull down selection box showing you the Projects to which you may upload images.

For the Destination, select the prearchive. This will give you a chance to review the details of your upload and match the data to the proper subject and session ID before placing the images in the archive proper.

Next, select the Browse button next to the file specification box and select the compressed archive file to be uploaded.

Finally, select the Upload button to start the file upload. You should see a “progress bar” indicating the percent of upload progress. Once the Upload progress has reached 100\%, then the Extract/Review progress bar should begin showing the progress of the extracting of files from the uploaded compressed archive. The extract process will look through your compressed archive for DICOM format image files to be placed into the prearchive.

Once the extraction is complete, you should see a message below the progress bars stating, “Your file was successfully uploaded. Click here to review and archive your uploaded sessions.” Clicking on the here link will take you to the CNDA prearchive where you will see any data that you have uploaded to the prearchive sorted by Session ID.

If you need to return to the prearchive (e.g. you forgot to click here to visit the prearchive after uploading images, or you needed to logout of the CNDA after uploading and want to return to the prearchive to review your uploaded data at a later time) then you can simply go to your CNDA Home page and choose Upload \(
ightarrow\) Go to prearchive from the menus across the top of the

\(^6\) As the option name “compressed upload” implies, you will ultimately upload a compressed file. However, the “compressed” in the option name refers to compressing the archive file that you will upload. The archive file (a single file containing other files) must be created using uncompressed images and then the archive itself must be compressed before uploading.

\(^7\) In this context, an archive file is a mechanism for combining a set of files into one file (the archive file) containing the entire set of files. The files placed in the archive file can be accessed and extracted individually or as a group from the archive file. Notice that this type of archiving does not (necessarily) imply that any compression is performed, either on the individual files placed in the archive file or the archive file as a whole. A file in the ZIP file format, both is an archive file and the archive file is compressed.
How do I move my image data from the prearchive into a CNDA project?

If you are not already viewing the prearchive, login to your CNDA account and choose Upload → Go to prearchive. You should then see a list of the sessions that you have uploaded to the prearchive (one row per upload). If you do not see the upload that you are wanting to move into a project, check carefully to see that the correct project is selected in the pull down menu right above the list of uploads.

Once you have found the row for the uploaded data that you wish to move, you can view the uploaded data by clicking on the Session/subject item at the very left of the list of prearchive data. Note that the scissors icon to the immediate right of the Session/subject identifier is “remove icon”. Clicking on the scissors will allow you to remove an upload.

When you have selected the Session/subject row for the data you wish to move, you will be presented with an “Image Session Creation Form”. See Figure 3 for an example of an Image Session Creation Form.
Figure 3: Example Image Session Creation Form page

On this form, you should verify that the information presented about the project, subject, session id, data, scanner, number of scans, scan type, quality, etc. are all correct. As is shown in Figure 3, if the subject does not already exist, it can be automatically created for you. However, you should seriously consider selecting the Add New Subject link in order to be able to populate demographic data for the subject including the Subject ID, Birth/Age information, handedness, race, etc.

You should carefully verify the Session ID to be used. If you have a Session ID that is not unique within your project (i.e. matches the ID for an existing session within your project), there should be a message in red stating that your session ID is a duplicate of a session which already exists in the project. If you still proceed to press the Submit button with a duplicate session ID (within a project) you will overwrite the existing session. This is probably not what you intend to do.

It is also important to make sure that each scan has the proper scan type listed in the Type column. These scan types are used later to specify how the image files are used during preprocessing and to specify which images are to be downloaded using the command line download tools.
Once you have verified and/or updated all the appropriate information for the uploaded data, press the Submit button at the bottom of the page to move the data from the prearchive to the actual CNDA project.

When the data has been successfully moved to the project, you should see an MR Session page that shows the information for the MR Session to which the data has been uploaded. Shortly afterwards you should also receive an email similar to that shown below confirming the successful archiving of the data.

From: nrgtech@npg.wustl.edu
Date: Wednesday, 09 Dec 2009 8:50
To: tbbrown@wustl.edu
CC: nrgtech@npg.wustl.edu
Subject: CNDA update: ab30197 Archiving complete

Dear T.Brown,

Ab30197 has been archived without errors.

Details for this session are available at the CNDA website.

CNDA Team.
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown

Using CNDA pipelines

What are CNDA pipelines?
CNDA pipelines are a set of standardized processes that can be applied to your scanning data.
The CNDA pipeline that is most likely to be used by Psychology Department fMRI researchers is the pipeline that performs standard BOLD preprocessing. This BOLD preprocessing pipeline is not the only pipeline available. There are also pipelines which:

- create Automated Phantom QA data,
- analyze seed based correlation, and
- build FreeSurfer data
among other things.

How do I associate a CNDA pipeline with a project?
Before a pipeline can be run on a scan session that has been uploaded to the CNDA, the pipeline to be run must first be associated with the project in which the data resides. To do this you first select the project of interest from your CNDA Home page.

When viewing the project page, you will see a set of tabs near the top of the page with headings like: Details, Publications, History, etc. Which tabs you actually see for a project will depend on what rights/permissions you have to that project. If you do not have the necessary permissions to modify the project, you will only see the Details, Publications, and History tabs. If this is the case, and you want to add a pipeline to the project, you will have to ask the project owner to grant you the necessary permissions.

If you do have the appropriate permissions to add a pipeline to the project, you will see a tab labeled “Pipelines”. Select the Pipelines tab to start the process of associating a pipeline with the project. You should then see a display that looks similar to Figure 4.

The top section of the display in Figure 4 should list any pipelines that are already associated with the project. However, there are times when even though some pipelines have already been associated with the project, no pipelines are listed. I’ve found that the following steps can be taken to ensure that all associated pipelines are actually listed. First, select the “Add More Pipelines” button to show a list of possible pipelines to be added. Next, select the “Show Project Pipelines” button under the list of addable pipelines. This returns you to the list of pipelines currently associated with the project and seems to consistently list the correct set of associated pipelines.

8 It is my understanding that there is a mechanism or process in place by which researchers can request the creation of new pipelines. However, as of this writing, I have not investigated how that is done.
9 You may also see tabs labeled Access and Manage for the project.
10 You may have to scroll to the right to view the full pipeline description.
Once you’ve seen the list of already associated pipelines and verified that the one you want to use is not already associated with the project. You can select the “Add More Pipelines” button.

Now the list of pipelines should include only those pipelines that are not already associated with the project. For this example, we will add the standard BOLD preprocessing pipeline. The pipeline’s name is listed as “GenericBoldPreprocessing.xml” and the description reads:

Pipeline to pre-process BOLD scan types. Includes the Functional Connectivity post-processing.

Further description of this preprocessing pipeline can be viewed by clicking on the “More Info” link to the right of the pipeline description.

To the left end of each row in the list of available pipelines are links labeled “Add” and “Details”. It is a good idea to select the Details link to the left of the pipeline you are planning to add. This will take you to a page that describes the input parameters required to run the preprocessing pipeline. You will probably want to print out that “details” page to have available as a reference before actually adding the pipeline to the project.
The details pages for the Generic Bold Preprocessing pipeline are shown in Figure 5, Figure 6, and Figure 7.

In the processing details document, after the pipeline authors, there is a description of the “Input Parameters Required” for the current version of the pipeline. If you have previously been using C-shell scripts that were originally created by Avi Snyder and then modified on a case-by-case basis for preprocessing your BOLD images, then you should find the set of input parameters listed for the preprocessing pipeline very similar to the set of variables for which you set values at the beginning of the preprocessing C-shell scripts.

In fact, there is often a correspondence between the variables in the C-shell scripts and the pipeline input parameters. However, the values for the pipeline input parameters should not always be set to the same value that you would use for the corresponding script variables.

For example, the mprs pipeline input parameter corresponds to the mprs C-shell script variable. However, when setting the value for the C-shell script variable, you specify the scan number within the scanning session (e.g. 4) that corresponds to the MPRAGE scans for your project. When specifying the value for the pipeline input parameter, you need to specify the scan type. The scan type for each set of scans is listed on the session page for each session. An example session page is shown in Figure 8.
Pipeline /data/nl-
bbluearc/marcus/CNDA_INSTALL/xdat_release/pipeline/catalog/build-tools/GenericBoldPreprocessing.xml

Runs on: MR Sessions
Generates:
Description: Pipeline to pre-process BOLD scan types. Includes the Functional Connectivity post-processing. More Info
Authors:
Name: Avi Snyder
Email: Rajaranjan Mohana
Phone:

Version: 1
Input Parameters Required:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>CSV Value</th>
<th>Schema Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>nrepers</td>
<td>Enter the scan types that correspond to MPRAGE scans for your project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The scan ids of these scans will be used to set the parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target</td>
<td>Enter the path to the study representative target to be used to do the atlas registration. See http://www.wikiproject.com/atlases targets for more details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross_day_register</td>
<td>Would a subject be scanned more than once in the project? Setting this value to 1 will result in using the T4 file of the first visit to register the subsequent visits to the atlas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fstd</td>
<td>Enter the scan types that correspond to BOLD scans for your project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The scan ids of these scans will be used to set the parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR_vol</td>
<td>Enter volume TR for the BOLD acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>skip</td>
<td>Enter the number of pre-functional frames to skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epidir</td>
<td>Set this value to 0 if the EPI slices were acquired</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Document Production Date: 12/14/2009

Figure 5: Page 1 of Generic BOLD Preprocessing Details
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data

Author: Timothy B. Brown

Date: 26 Apr 2010

```
tsc
Enter the scan types that correspond to TSC scans for your project. The scan ids of these scans will be used to set the parameter.

t1w
Enter the scan types that correspond to T1W scans for your project. The scan ids of these scans will be used to set the parameter.

pdt2
Enter the scan types that correspond to PD2 scans for your project. The scan ids of these scans will be used to set the parameter.

epx2at
Select 0 to leave processed time series in EPI space; 1 to transform to 333 space; 2 to proceed directly to t4_x53d_4dfp.

normode
Set to 1 to enable per-frame volume intensity equalization; 0 for no operation.

economy
This parameter will decide which of the intermediate files are to be saved. Possible values for this parameter are: 2,3,4,5,6. If economy is deleted for each of the bold runs, if (economy > 2) * .4dfp.* files are deleted for each of the runs; if (economy > 3) * .fals_4dfp.* files are deleted for each of the runs; if (economy > 4) * .eps2at.* files are deleted for each of the runs; if (economy > 5) * .epx2at.* files are deleted for each of the runs; if (economy > 6) * .t1w.* files are deleted.

Step 0a: Create a folder for build
Step 0b: Remove pre-existing a folder for session in the build
Step 0c: Create a folder for session in the build
Step 0d: Prepare Folder Structure
Step 1a: Create Individual BOLD study folders
Step 1b: Create Individual MPRAGE study folders
Step 1c: Create Individual TSE study folders
Step 1d: Create Individual T1W study folders
Step 1e: Create Individual PD2 study folders
Step 1a-1: Copy ROI_dicom files into study folder
Step 1a-2: Unzip Bold Data
Step 1a-3: Copy TSE_dicom files into study folder
```

Figure 6: Page 2 of Generic BOLD Preprocessing Details
Step 1a-4: Unzip TSE Data
Step 1a-5: Copy MPRAGE Dicom files into study folder
Step 1a-6: Unzip MPRAGE Data
Step 1a-7: Copy T1W Dicom files into study folder
Step 1a-8: Unzip T1W Data
Step 1a-9: Copy PD/T2 Dicom files into study folder
Step 1a-10: Unzip PD/T2 Data
Step 2: Create the CSH Params File
Step 3: Invoke generic_cross_bold_pp script
Step 3a: Invoke fcMRI_preproc script
Step 4: Clean Up
Step 5: Fix paths to image file
Step 6: Insert %comma% as Insert Reconstructed Image Details
Step END-MOVE: Copy from BuildDir to ArchivePath
Step END-Notify: Notify

Document Production Date: 12/14/2009
Figure 8: Session Page for session ab30197

Note that the “Scans” section of the page shows a table with headers Scan, Type, Usability, Files, and Note. It is the value listed under the Type header that needs to be specified for the mprs pipeline input parameter.

So for the example shown in Figure 8, if you would have specified scan set 4 for mprs in the shell script, you will need to specify t1_mpr_1mm_p2_pos50 for the mprs pipeline input parameter.

Sometimes the value that you would set for a script variable and the value for a pipeline input parameter are identical. For example, the script variable economy and the pipeline input parameter economy both take numeric values (from 0 to 6) that have the same meanings.

So, when specifying values for the pipeline input parameters using a C-shell script as an example, be careful to note whether you should specify the parameter in the same manner for the CNDA pipeline as it was specified in the C-shell script.

Two of the pipeline input parameters for the Generic BOLD Preprocessing script warrant further discussion here. The first is the target input parameter. The details page for the pipeline states that for the target input parameter you should, “Enter the path to the study representative target
to be used to do the atlas registration.” It also directs you to the web page http://nrg.wikispaces.com/atlas_targets for more details. The specified web page tells you a file system path name to use to specify a particular target. For example, to specify target 711-2C you are told to specify the path /data/petsun43/data1/atlas as the value for the target input parameter.

This turns out to be incorrect. Instead, the value to be specified for the target input parameter is much more straightforward. You should simply specify the target name. So to use atlas target 711-2C, you should specify 711-2C for this parameter. The web page at http://nrg.wikispaces.com/atlas_targets is still useful as a listing of the atlas targets that are available.

The other input parameter that needs discussion here is the t1w input parameter. It is unclear to me as of this writing what the t1w input parameter actually specifies. The name and description on the details page seem to indicate that the user should specify the scan types for T1-weighted scans. However, I haven’t found an example C-shell script that actually uses a corresponding t1w variable, and the MPRAGE scans that are specified by the mprg input parameter seem to be the T1-weighted scans for the session. My experience to date has been that you can leave the t1w input parameter blank.

It is also worth noting that there is a difference in how you specify multiple values for a pipeline input parameter compared to how multiple values are specified for a variable in a C-shell preprocessing script. In the C-shell script, multiple values for a single variable were separated by spaces. For example, you might specify the BOLD scans for a session in the C-shell script by setting the values for the fstd variable as follows:

```
set fstd = ( 11 12 13 14 15 )
```

For the input parameters specified for a CNDA pipeline, multiple values are to be separated with commas. So the values for the fstd input parameter, which are specified by scan type instead of scan number, might be listed like:

```
ep2d_bold_Stroop1, ep2d_bold_Stroop2, ep2d_bold_Stroop3,
ep2d_bold_Stroop4, ep2d_bold_Stroop5
```

You should be aware that when you associate a pipeline with a project, you are not causing the pipeline to automatically execute for each subject in the project. Also, the input parameters that you specify when associating a pipeline with a project are project-wide default values for the parameters. These default values can be checked and changed when you actually request that a pipeline be run for a particular scan session.

To go ahead and associate a pipeline with a project:

- Have the details page for the pipeline available to use as a reference
- Press the “Add” button to the left of the pipeline you want to associated with the project
- Fill in the input parameters page, and
- Press the Submit button.
How do I use a CNDA pipeline for preprocessing a set of data?

Once you have a particular pipeline associated with a project, you can invoke that pipeline on an MR session. To invoke the pipeline, you will need to first go to the MR Session page for the session to be processed using the pipeline. See Figure 8 above for an example MR Session page.

In the “Actions” box near the top of the page to the right of the “Details” and “Projects” tabs there is an action labeled “Build” with a icon of a wrench next to it. This is where you initiate a run of a preprocessing script. On the page for the MR session for which you want to run a pipeline, select the “Build” action.

A browser window will pop up asking you to select the pipeline to launch for the MR session. Select the appropriate pipeline and press the “Submit” button. (If the appropriate pipeline is not available for selection, see the “How do I associate a CNDA pipeline with a project?” section above.)

Once you have pressed the “Submit” button, you will be presented with a page asking you to set/verify the input parameters for this run of the pipeline. This is where you can verify/change the input parameters from the default values that were specified when the pipeline was associated with the project.

When the pipeline processing is complete, an email will be sent to the email address associated with your CNDA account. If you want to specify other email addresses to receive notification, list them in the box provided at the bottom of the page.

When the pipeline parameters have been specified to your satisfaction, press the “Run processing” button at the bottom of the page. You should then receive a notice that the “build process was successfully launched.”

If the pipeline fails, you will receive an email with a subject line similar to:

 CNDA update: Processing failed for MR Session ID

If the pipeline succeeds, you will receive an email with a subject line similar to:

 CNDA update: Session MR Session ID processed

Who do I contact to get help with the CNDA?

The proper email address for getting support for the CNDA is:

 cnda-help@npg.wustl.edu

That email address should always get your question to a CNDA support person.

As of this writing, the support for CNDA is handled by Genevieve Gurney. Her contact information is:

 Name: Genevieve Gurney
 Email: gurneyj@wustl.edu
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown Date: 26 Apr 2010

Using NIL maintained resources for analysis outside of the CNDA

What is a NIL Un*x account and how do I get one?

In order to analyze data using Washington University standard tools for fMRI analysis (e.g. FIDL) and other Un*x based software, we will make use of computer systems maintained by the Computer Support Group (CSG) within the Neuro-Imaging Laboratory (NIL). To access these systems, you will need to have a NIL Un*x account. A NIL Un*x account gives you login/shell level access to NIL/CSG maintained Un*x systems.

A NIL Un*x account is not the same as an RIIS account which is necessary for you to use the scanners. Even though your NIL Un*x account may have the same username as your RIIS account and may, if you choose, have the same password as your RIIS account, the two accounts are separate entities. You may have one without having the other.

To get a NIL Un*x account, visit the NIL homepage at http://www.nil.wustl.edu. In the menu of links to the left of the page, you should see a link labeled “Documents and Forms”. When you select the “Documents and Forms” link, you will be presented with a list of forms from which to choose. One of those forms/links should be the “New User Request Form”. Selecting that link will allow you to download or open a Microsoft Word™ format document titled “MIR Client Computer Access Request Form”.

Fill out this form to request a NIL Un*x account. When filling out the form:

- Be sure that on page 3 you fill in “Section C” and check the box requesting a “UNIX login (Sun or Linux)” and the box requesting “VPN Access”.
- In the line labeled “Other” in “Section C”, please note the user group(s) to which you would like your account to belong (e.g. ccp, staff, shimony, etc.) If you do not know what groups you should be in, please ask your lab director.
- Also on the “Other” line, please include an indication of what command line shell you would like to have as your default login shell (e.g. csh, tcsh, bsh, bash, ksh, etc.) If you do not know which shell to request, tcsh is a reasonable default choice. Users transferring their work from the IAC Solaris systems will likely be most comfortable with the tcsh shell. If you have some other shell preference, feel free to make your choice known on this line.
- Also on page 3, you will need to get the approval signature of a Lab or Section Chief.

FAX the form to the MIR Executive Director’s office at the phone number given at the top of the form.

How do I set up the VPN connection to access the NIL maintained computer systems?

In order to connect to the NIL machines to process your data, you will not only need a NIL Un*x account, you will also need to become part of a Virtual Private Network (VPN). A VPN connection becomes a new network connection (apart from your standard internet connection) that uses the same hardware as your standard internet connection.
To setup this VPN connection, you will need to install VPN client software on the computer you will be using to connect to the VPN. To get the client software visit:

http://www.nil.wustl.edu/csg/faqs/CiscoVPN.html

There you will find links to locations where you can download the client software for Microsoft Windows, Mac OS X, and Linux. Links to installation instructions for Windows XP and Mac OS X are available on that page also.

Important note: If you are using Mac OS X Snow Leopard, do **not** install the Cisco VPN client software. Instead, visit the web page listed above and just get the “Neuroimage Departmental Profile” file (as is described in the next paragraph.) Once you have the profile, there is no need for you to download the Cisco VPN client software. Instead see the section below titled *Using Cisco VPN with Mac OS X Snow Leopard*.

In addition to downloading the necessary software and printing the appropriate instructions, you should also download the “Neuroimage Departmental Profile” which is available from a link on the same page. The profile is provided in ZIP compressed archive. The ZIP archive contains only one file: **Neuroimage.pcf**. Extract **Neuroimage.pcf** from the archive and store it somewhere where you can easily find it. This is a text file that you will use when configuring your VPN client software to connect to the Neuroimage private network.

Follow the installation instructions provided to install and configure your VPN client software. You will likely have to restart your computer to finish the installation process.

Simply having VPN client software installed on your system does not yet enable a network connection to the Neuroimaging department machines. For example, if you try to use telnet or ssh to connect to a machine in the neuroimage.wustl.edu domain, your connection to the host will fail.

In order to make a connection to a machine in the **neuroimage.wustl.edu** domain, you will need to start up the VPN client software that you just installed and enter your VPN user name and password. Note that your VPN username and password are not necessarily the same as your Un*x shell login username and password. You should have received both a VPN username and password and a Un*x shell username and password in response to your request for a NIL Un*x account.

Once you’ve started the VPN Client software for the first time, you will need to import the “connection entry”. This is the **Neuroimage.pcf** file that you downloaded earlier. Select “Import” by either clicking on the Import Icon or selecting *Connection Entries ➔ Import* from the application menu. Navigate to the **Neuroimage.pcf** file that you downloaded earlier and select Open. You should get some acknowledgement that the VPN connection entry was successfully imported.

A new Connection Entry should show up in the VPN Client interface. It will be called the Neuroimage Connection Entry. Select that entry and choose to “Connect” to it. Enter your sign on credentials (username and password) for the Neuroimage domain. Once this is done, you will be connected to the Domain via VPN.
Using Cisco VPN with Max OS X Snow Leopard

Snow Leopard comes with its own Cisco compatible VPN Client software already installed. The configuration information you need for setting up the VPN Client can be extracted from the *Neuroimage.pcf* file, but there is no way (that I know of) to simply import the contents of that file into the client.

How do I change my VPN password?

The VPN username assigned to you when you were granted VPN access is intended to remain your VPN username for as long as you have reason to have VPN access. The VPN password assigned to you when you were granted VPN access is intended to be temporary. You should change that password. However, it is not obvious how to do so. The following are the necessary steps for changing your VPN password.

1. Visit the following link: https://nilmail07.wustl.edu/IISADMPWD/aexp2b.asp
2. You will be shown a form to fill in with the following fields:
 - Domain:
 - Account:
 - Old password:
 - New password:
 - Confirm new password:
3. To change your password, fill in the form and press the OK button.
4. The Domain field should be filled in with *neuroimage.wustl.edu*

What NIL maintained CPUs should I use?

We have been asked to use the following four systems for our fMRI analysis.

- *cninds01.neuroimage.wustl.edu*
- *cninds02.neuroimage.wustl.edu*
- *cninds03.neuroimage.wustl.edu*
- *cninds04.neuroimage.wustl.edu*

How do I access NIL systems?

Once you have your VPN client up and running and have established a VPN connection to the *neuroimage.wustl.edu* domain, you should be able to get simple shell-level access to the NIL systems by using client software like *telnet* or *ssh*. After establishing a connection using *telnet* or *ssh*, use your Un*x* account name and password to login.

11 Thanks Alan Anticevic for finding this link and testing VPN configuration within Snow Leopard.
Just as you changed your temporary VPN password, you will most likely also want to change your assigned Un*x account password. Use the `passwd` command to change your Un*x password.

How do I use VNC to access NIL Systems?

You probably will not be able to run all the analysis software that you would like using a simple `telnet` or `ssh` connection to the NIL systems. Instead, you will likely want to establish a Virtual Network Computing (VNC) connection from your desktop computer to the NIL systems. Establishing a VNC connection involves:

1. Selecting VNC Client software for your desktop system and installing that software.
2. Starting a VNC Server on one of the NIL systems.
3. Connecting your VNC Client software with the VNC Server that you have started on the NIL systems.

What VNC Client software should I use on my desktop?

There are many choices for VNC Client software for your desktop computer. For Microsoft Windows™ systems, I've had pretty good luck with UltraVNC (http://www.realvnc.com/). For Macs, Chicken of the VNC seems to be the default local choice. For Linux, “almost all Linux distributions include an updated/customized version of the RealVNC free edition. For example, in Debian and its derivatives, the RealVNC server and client appear under the packages named `vnc4server` and `xvnc4viewer`, respectively.”

13 See http://www.realvnc.com/products/free/4.1/man/vncserver.html for a description of the `–geometry` and `–depth` command line switches. As an alternative to the `–depth` option `–cc 3` can be used. However, The `–cc 3` option is intended for use with “old” X applications. The `–depth` option seems to be the better choice.
The first time you issue this command, you will be prompted to enter a password to be used to access the VNC Server that you are creating. You will need to enter this password whenever you connect to this server using your VNC client.

If you successfully start a VNC Server process for the first time, the response you will receive from the system will include a line that identifies the new “desktop”. The line will look similar to:

```
New ‘cninds01:2 (tbbrown)’ desktop is cninds01:2
```

At the time you start your first VNC Server process, you should also see messages indicating that a new default startup script has been created for you, that applications in that default startup script are being started, and that a log file for the session is being maintained. E.g.:

```
Creating default startup script /home/usr/tbbrown/.vnc/xstartup
Starting applications specified in /home/usr/tbbrown/.vnc/xstartup
Log file is /home/usr/tbbrown/.vnc/cninds01:2.log
```

The machine name reported (cninds01 in the above example), the username (tbbrown in the above example), and the session number (shown as :2 in the above example) will all be specific to the machine you are using, your username, and the VNC Server session number assigned by the vncserver command in your case.

Also note that if the server is created correctly, there will now be a .vnc subdirectory in your home directory. If you change directory (cd) down into the .vnc subdirectory, you will see files named cninds01:2.log, cninds01:2.pid, passwd, and xstartup.

The item of particular interest to you for using the VNC Server that you’ve just started is the number after the colon (:) in the .pid file. This is the VNC Server session number and is needed in order to connect to or shut down the VNC Server. In the example above, the session number is 2.

To make your VNC session more useful, I suggest that after the first time you start a VNC Server, you immediately shutdown the server and modify the xstartup file in your ~/.vnc directory.

Stop the VNC server using a command like the one shown in the “How do I kill/stop my VNC Server?” section below.

The file ~/.vnc/xstartup will have a command line that starts a window manager for you. That line will look similar to:

```
twm &
```

You will want to change that line to use a slightly more user-friendly window manager. If you have a window manager that you are familiar with and like (and know should be available), then feel free to change the command to start that window manager. Otherwise, you will probably want to simply change the line in the ~/.vnc/xstartup file to:

```
dtwm &
```
One (relatively) simple way to make this change to your ~/.vnc/xstartup file is to issue the following sequence of commands:

```bash
% cd ~/.vnc
% mv xstartup xstartup.original
% sed s/twm/dtwm/ xstartup.original > xstartup
% chmod +x xstartup
```

This sequence of commands makes a copy (for safe keeping) of the xstartup file that is originally created for you and calls that copy xstartup.original. It then creates a new xstartup file which is a duplicate of the original with dtwm substituted for twm and sets the appropriate accessibility for the newly created xstartup file.

Once you have made this change to the xstartup file, you should start a new VNC Server process. Then you can exit from the telnet or ssh connection. The VNC Server will be left running even after you log out.

How do I find my VNC Server session number if I forget it?

If you want to connect to a VNC Server session but have forgotten the session number (which is needed to connect), then you can find the session number by:

1. Logging into the machine on which the VNC Server session is running.
2. Change to the ~/.vnc directory: cd ~/.vnc
3. List the contents of the directory: ls
4. Look for a file with a name that begins with the machine name (e.g. cninds01) and ends with the extension .pid. For example, cninds01:2.pid.
5. The number after the colon and before the .pid extension is your VNC Server session number.

How do I connect to the VNC Server that I’ve started?

To connect to the VNC Server you have created, first make sure you have established a VPN connection to the neuroimage.wustl.edu network. Next, start your VNC client software. Use the VNC client software to “connect” to the VNC Server session. The server session will be specified by giving the node name (machine name) of the machine to which you want to connect (e.g. cninds01.neuroimage.wustl.edu), followed by a colon (:), followed by the result of adding 5900 to your VNC Server session number.

In the above example, we would specify the server session to which to connect as:

```
cninds01.neuroimage.wustl.edu:5902
```

The exact mechanism used to connect your VNC Client to the VNC Server will depend upon what VNC Client software you are running. You will most likely need to specify your VNC Server password (established the first time you started a VNC Server on the NIL systems) in order to connect.

Once you have successfully established a connection between your VNC client and the VNC Server, you are likely to have at least a single terminal window on the desktop provided by the
If there is no terminal window and you are using the window manager dtwm as suggested above, you can start a terminal window by “right clicking” on your desktop, selecting Tools, and then selecting Terminal. You can then start X-terminals by entering:

`% xterm &`

How do I run FIDL on the NIL maintained machines?

FIDL can be invoked on the NIL maintained systems by simply issuing the fidl command at the shell command prompt in any terminal window, similar to:

`% fidl &`

How do I run background jobs using the Sun Grid Engine?

Long running “background” jobs can be run on an NRG maintained computing cluster. Shell scripts that are generated by FIDL that are expected to run for a relatively long time would be good candidates for consideration to be run on this Sun Grid Engine cluster.

See http://nrg.wikispaces.com/SGE_QSubWiki for instructions on how to use the cluster.

How do I kill/stop my VNC Server?

To kill/stop your VNC Server, you will need to know the server session number (in the above examples that session number is 2) and the machine on which the server session is running (e.g. cninds01). Log in to the machine using `ssh` or `telnet` and issue a command like the following:

`% vncserver -kill :2`

Replace the 2 in the above command with your server session number.

14 There is likely to be at least one line in your `~/.vnc/xstartup` file that starts the xterm. The line will likely start with `xterm`, end with an ampersand (&), and perhaps have some `xterm` command options specified in between.
Getting data out of the CNDA for further analysis

Where should I store my data for access by NIL maintained computer systems?

In order to use FIDL or other software to analyze your data on the NIL systems, you will need to download the data from the CNDA to some file system accessible from the NIL systems. Often you will not want to download all of the data from the original scanning session. Instead, you may select to download just a few of the files created during the original scanning session and most (or all) of the files generated by the BOLD preprocessing pipeline.

Of course, you could choose to download the data directly to your desktop computer or any lab specific computer on which you want to perform analysis. However, for the most efficient access from the NIL systems, the data downloaded needs to be stored in a place that is easily and efficiently accessible by those systems. We (the Psychology Department) have space available under the `/data/nil-external` directory.

There are two subdirectories under `/data/nil-external` that are specifically for use by laboratories in the Psychology Department. They are `/data/nil-external/psych` and `/data/nil-external/psychf`. In these directories there should be lab specific subdirectories for storage of your data (e.g. CCP, DCL, and HRL). The directory structure to use within the lab specific directories is to be decided by your lab directors. Contact your lab director to determine how to organize your data within the lab specific directories.

How do I retrieve/download data from the CNDA using the standard CNDA Web interface?

There is more than one way to download files for a session using the standard CNDA Web interface. One of the more flexible ways is to select the project of interest from your CNDA homepage, select the session of interest from the project page, and then select “Manage Files” in the Actions box at the upper right hand side of the session page.

Selecting the “Manage Files” action will cause a “File Manager” window to pop-up in front of your session page. The File Manager window looks like a traditional file folder navigation tree with + and − characters to the far left of folder (i.e. directory) names and a specialized check box just to the right of the + or − character. See Figure 9 for an example.

The + or − character indicates whether the view you are seeing of the file is “closed” or “open”. The + means you are seeing only the folder name and not the contents of the folder, the − means you are seeing the folder and an indented list of its contents below the folder name. Clicking on the + or − toggles the view that you see.

The specialized check box to the right of the + or − indicates the selection status for the folder, with a check mark on a grey background indicating that the entire folder and all its subfolders and files have been selected, a minus sign on a grey background indicating that some but not all of the content of the folder have been selected, and an empty box with a white background indicating that none of the content of the folder has been selected. You change the selection status by clicking on the check box for a folder or subfolder.
Once you have selected the folders that you want to download, you can select the format for the resulting downloaded file in the pull down menu near the lower right hand corner of the File Manager (options are zip and tar.gz). Then selecting the Download button will download the contents of the selected folders.

How do I retrieve/download data from the CNDA using URI specifications from a browser?

Since downloading files using the standard Web interface from the CNDA can be tedious and cannot easily be scripted for submittal as a long running “batch” job, the Neuroinformatics Research Group (NRG, the maintainers of the CNDA) have made available a mechanism for listing and retrieving data stored in the CNDA using a Representational State Transfer (REST) software architecture. While the details of the REST software architectural style are well beyond the scope of this document, the effect for users wanting to list or retrieve the files stored in the CNDA is significant.

This software architecture makes viewing and downloading listings of files, individual files, and groups of files straightforward once you understand the “file system”-like hierarchy that the REST interface makes available and you understand how to build a Universal Resource Identifier (URI) that identifies the file(s) and what you would like to retrieve.
The easiest way to understand the “file system” and construction of URI’s is to examine the results of creating URI’s and entering them into the address field of a web browser. For these examples, we’ll start out looking at listings and data from the project titled “Encoding and Remembering Events Across the Lifespan: Functional correlates of effective segmentation”. This project has a CNDA Project ID of NP891.

First example URI

The first example URI we will use is:

This URI can be broken down as follows:

<table>
<thead>
<tr>
<th>https:</th>
<th>Indicates that we will be using HyperText Transfer Protocol in secure mode for requesting and receiving results</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnda.wustl.edu</td>
<td>Is the name of the host to which we are making a request</td>
</tr>
<tr>
<td>REST</td>
<td>This is the beginning of the file-system-like path name indicating what we want to retrieve from the server (cnda.wustl.edu). The use of REST indicates that we are making a request that involves the REST software mechanism.</td>
</tr>
<tr>
<td>projects</td>
<td>The path continues with an indication that we are looking for information (a listing or file) that is organized by project ids.</td>
</tr>
<tr>
<td>NP891</td>
<td>This is the project id</td>
</tr>
<tr>
<td>experiments</td>
<td>The path continues with an indication that we are looking for information (a listing or file) that is organized by experiments. In this context the term “experiment” corresponds to an MR session.</td>
</tr>
<tr>
<td>vc29901</td>
<td>The MR Session ID</td>
</tr>
<tr>
<td>DIR</td>
<td>Allows access directly to the session directory in the archive.</td>
</tr>
<tr>
<td>?format=html</td>
<td>Indicates that we would like the results provided back to us in HTML format (a web browser compatible markup language)</td>
</tr>
</tbody>
</table>

Let’s consider the result of entering the above URI into the address bar of a web browser.

The first thing to note is that if we are not already logged in to the CNDA using the browser, we will be prompted for a username and password in order to get access to the CNDA data specified by the URI. Use your normal CNDA username and password.

After successfully validating our username and password, we get a listing of the contents of the “directory” specified by our path. That is a listing of the contents of the vc29901 session within project NP891.
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown Date: 26 Apr 2010

The results are provided back to the requesting client software, in this case the web browser. The browser will use those results to present something similar to Figure 10.

![Figure 10: More user-friendly presentation of first URI results](image)

What we have effectively retrieved is similar to what we would get when issuing an `ls` command from a Unix shell prompt.

These are the files and subdirectories that are at the path:

```
/REST/projects/NP891/experiments/vc29901
```

on the `cnda.wustl.edu` server.

Of the contents shown in Figure 10, several items are files:

- `Transfer.err`
- `Transfer.log`
- `dcmtoxnat.log`
- `Transfer_Transfer.xml`
- `GenericBoldPreprocessing_Params20090529.xml`
- `GenericBoldPreprocessing_Params20091122.xml`

Several are “subdirectories”:

- `SCANS/`
- `UPLOADS/`
Notice that, just as is often true of the Unix `ls` command, the names that end with slashes `/` represent subdirectories.

Moving down through the directory structure

Suppose I wanted to list the contents of the SCANS subdirectory. How would I construct a URI to use to get those results? It seems natural that you would add `SCANS` into the URI to end up with a URI like:

```plaintext
```

Notice that the `?format=html` clause is always placed at the end.

Figure 11 shows the result of entering that URI into a browser. Indeed, this is the set of subdirectories of the SCANS directory.

![Figure 11: Listing of contents of SCANS subdirectory](image)

You can use a similar technique to get list the contents of the PROCESSED subdirectory which itself just contains a subdirectory named BOLD (see Figure 12).
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown Date: 26 Apr 2010

Figure 12: Contents of PROCESSED subdirectory

We can continue working our way down through the directory structure to the PROCESSED/BOLD/boldrun1 subdirectory to get something like Figure 13.

Figure 13: The boldrun1 directory

Actually downloading some files

While it’s useful to be able to navigate around the directory structure like this, the real goal here is to be able to download some of the files to a local machine (e.g. your desktop machine or the NIL systems) for further processing. Once you’ve found a URI that lists the files that you want, all you have to do to download the files is change the format argument that we’ve added to the end of the URI.

Let’s use format=zip instead of format=html to access the contents of the boldrun1 directory that is shown in Figure 13. So now our URI is:
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown Date: 26 Apr 2010

https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR/PROCESSED/BOLD/boldrun1?format=zip

Using this URI will result in a ZIP format file being downloaded through your browser to wherever you specify to save the ZIP file. The ZIP file will contain the files that we saw listed in Figure 13.

Creating a shorter form of the URI using the accession number

As you listed the contents of directories in your browser using URIs, you may have noticed that one of the columns in each listing is titled URI. If the item in the column is a file, the URI column shows a URI that will cause that file to be downloaded. If the item in the column is a subdirectory, the URI in that column will get you a listing of the contents of that directory. In either case, these URIs are supplied as a link that you can click on to either cause a file to be downloaded or to list the contents of a subdirectory.

You also may have noticed that the URIs specified in that column look slightly different than the ones we’ve been using above to get to the various subdirectories. That is because the URI supplied for that column use a slightly different navigation technique to get to the appropriate files and directories.

Each session that is uploaded to the CNDA is assigned a unique identifier. That unique identifier is called the session’s accession number. If you know the MR session’s accession number, you can use that information to create shorter URIs to access parts of the session.

In the example shown above, the MR Session vc29901 in project NP891 was assigned accession number CNDA_E00541. Using this information, you can replace the portion of the path specified in the URI that reads:

`/projects/<project id>/experiments/<session id>`

with:

`/experiments/<accession number>`

Thus:

can be shortened to:

https://cnda.wustl.edu/REST/experiments/CNDA_E00541/DIR?format=html

You and others on your team probably will know the Project ID and the MR Session ID for the data you want to access. You are less likely to know (at least initially) the accession number that has been assigned to your MR session data. So your URIs will probably be easier to read and understand if you use the longer form, which includes the Project ID and the MR Session ID. But you need to at least understand how the shorter form URIs are created.

Using recursion to see or retrieve more data

Earlier we saw how to create a URI to list (and then to retrieve) data in the PROCESSED/BOLD/boldrun1 subdirectory for or selected example session. Of course, it would be tedious if we had to construct a separate URI to list or retrieve each of the boldrun1, boldrun2, boldrun3, boldrun4, and boldrun5 subdirectories.
Instead of creating separate URIs for each of the boldrunN subdirectories, we can simply add another “argument” to the end of the URI. Let’s add the text “&recursive=true” to the end of the URI. Part of the result of using this URI is shown in Figure 14.

Notice that the immediate contents of the BOLD directory are included and the contents of each subdirectory of the BOLD directory are also included. If any subdirectory of the BOLD directory had further subdirectories, then the contents of those subdirectories would also be included and so on down the directory structure. Of course, to download all of these files, we would simply need to change the format=html argument to format=zip in the URI.

Note that the order of the arguments is not relevant. The recursive=true could come before the format=zip in the URI. The important thing to understand is that the question mark (?) in the URI signals the beginning of the arguments and the ampersand (&) separates multiple arguments. So that reversing the order of the arguments in the URI used in Figure 14 would result in the end of that URI reading:

```
BOLD?recursive=true&format=html
```

We could list the entire contents of the PROCESSED directory and all of its subdirectories by using a URI like:

```
https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR/PROCESSED?format=html&recursive=true
```
Of course, we could then retrieve the entire contents of the \textit{PROCESSED} directory and all of its subdirectories by changing \texttt{format=html} to \texttt{format=zip}. At the time of this writing, this results in a 1.55GB zip compressed file being downloaded.

Expanding upon this, we could download the entire set of data for the MR Session \texttt{vc29901} within project \texttt{NP891} with the following URI.

\begin{verbatim}
https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/
 DIR?format=zip&recursive=true
\end{verbatim}

At the time of this writing, this results in a 1.72GB zip compressed file being downloaded.

\textbf{Using wildcards to see or retrieve more data}

The \texttt{SCANS} subdirectory for the \texttt{vc29901} session itself has subdirectories that are numbered 1 through 13 for each of the various scans that made up the session. Each of these numbered subdirectories has subdirectories of its own named \texttt{DICOM} and \texttt{SNAPSHOTS}.

Suppose we wanted to get a list of (or retrieve) all the files in the \texttt{DICOM} subdirectories for all of the 13 scans, and we did not want the contents of the \texttt{SNAPSHOTS} subdirectories included. We could do this using “wildcard” characters. A URI like:

\begin{verbatim}
https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/
 DIR/SCANS/*/DICOM?format=html
\end{verbatim}

would give us a listing of those \texttt{DICOM} files.

Of course, changing the \texttt{format} to \texttt{zip} instead of \texttt{html} would download a zip file containing those files.

\textbf{Some additional notes}

There are a couple other things that are worth knowing about accessing the CNDA data files using URIs. First, sometimes you will get a page that says something to the effect of, “Specified request didn’t match any stored files” or “The server has not found anything matching the request URI”. These are most likely to be the result of an incorrectly composed URI (project id incorrect, session id misspelled, etc.)

However, you will sometimes get a similar response when you have typed the URI correctly. This is generally attributable to your CNDA account not having access to the session you have specified. You may need to contact the owner of the project in question and make sure that your account has access to the project in order to access the files using these URIs.

A second thing to note is that if you mistype the name of the format that you want, say you accidentally type \texttt{format=ziip} instead of \texttt{format=zip}, then the results will be formatted as if you had not specified any format at all. Thus, the results will be an XML file and will be handled by your browser the way it handles XML files.

The last thing to note, at least for now, is that the above example using wildcards is just a “scratch the surface” introduction. You should feel free to experiment and try placing wildcard characters at other places in the URI to see what happens. If you are familiar with filename wildcard characters used within Un*x shells, then you might want to try some of those wildcard characters too.
How do I retrieve/download data from the CNDA using command line tools?

The previous section contains examples to help understand the construction of URIs to list or retrieve files from the CNDA. But entering those URIs into a browser’s address bar doesn’t allow you to put downloads of files from the CNDA into script files and run them as “background” or cron jobs. To do that we need a command line tool that can issue requests to a web server (URIs) and save the result of those requests.

One such tool is cURL (http://curl.haxx.se). cURL is open source and binary installation packages are available for a large variety of operating systems (Windows, DOS, HP-UX, various flavors of Linux, Solaris, and Mac OS X among them). cURL has been installed on the NIL systems for our use.

cURL has a lot of features, and we do not plan to cover them all (or anywhere close to all of them) in this short section. For more information about using cURL, you should refer to the cURL manual (http://curl.haxx.se/docs/manual.html).

As in the previous section, we’ll learn by viewing some simple examples. We’ll start by using the first URI that we used in the previous section

https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR

We’ll issue the command

% curl https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR

at the shell command prompt.

The first problem you’ll note is that since you are issuing an https request, cURL will want to verify a Secure Socket Layer (SSL) certificate. For now, we’ll bypass that issue by adding the –k option to the command line.

% curl -k https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR

This command gives us output that looks like:

```html
<html>
<head>
  <title>Status page</title>
</head>
<body>
<h3>The request requires user authentication</h3><p>You can get technical details <a href="http://www.w3.org/Protocols/rfc2616/rfc2604.2">here</a>.<br>Please continue your visit at our <a href="/">home page</a>.</p>
</body>
</html>
```

Figure 15: First cURL output
Two things to note about this output are:

1. It is indicating that you need to have “user authentication” (a specified username and password) to access the data of interest.

2. The output was sent right back to the console (the standard output location).

We’ll first deal with the user authentication issue, then see how to send the results elsewhere.

The easiest way to specify a username when using cURL is to use the –u command line option.

```bash
% curl -k -u tbb https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/DIR
```

This works, but causes cURL to prompt us for the appropriate password. The results are again sent to the standard output location (our shell window), but they are now in XML format.

The prompting for a password will have to be removed if we’re going to use this in a background shell script. We can fix that by using –u <username>:<password>. We can change to HTML output by adding the same ?format=html that we used in the previous section.

```bash
```

If you redirect the output from the standard output location to a file (the technique that usually works is to add > <filename> to the end of the command line) and then open up the file in a browser, you’ll see that we now have used a command line to download a file that corresponds to Figure 10.

Now you can begin to see how cURL commands can be embedded in scripts to download the data that you need from the CNDA. Let’s skip ahead to where (in the previous section) we built a URI to download the entire contents of the PROCESSED directory and all of its subdirectories. That URI was

```bash
https://cnda.wustl.edu/REST/projects/NP891/experiments/vc29901/
DIR/PROCESSED?format=zip&recursive=true
```

If we use that URI in a cURL command with –k and –u <username>:<password>, we will have created a command line that will download a zip file containing all the specified files. In some command line shells, the ampersand before the recursive=true part of the command will cause problems. These can usually be fixed by putting double quotes (“”) around the entire URI.

Don’t forget to redirect the output from this command to a file. If you don’t redirect the output, the entire multi-gigabyte zip file will be sent to your terminal/console/standard output.

You might notice that cURL displays a “progress meter” indicating the amount of transferred data, transfer speeds, estimated time left, etc. To turn off this display add the –s option to the command line.
A better way to specify an output file.

If you redirect the output from a cURL command using the standard redirect operator (a greater than sign, >, added to the end of the command line followed by the name of the file to which to send the output) then there is a limit on the size of the output file that can be created. That limit is roughly 2GB. So if you issue a cURL command like:

```bash
% curl -k -u tbb:password myuri > myfile.zip
```

where `password` is replaced with your CNDA password, and `myuri` is replaced with the URI specifying what you want to download, then if the resulting `myfile.zip` file should be larger than 2GB, then the download will fail with an error message indicating, “Failed writing body”.

To avoid this problem, you should specify the output file for your cURL command using the `-o` command line option. This would change the above command to:

```bash
% curl -k -u tbb:password -o myfile.zip myuri
```

IMPORTANT NOTE: Unzipping large files

The standard `unzip` command that is available at `/usr/bin/unzip` and is likely to be the command used when you just enter:

```bash
% unzip
```

does not support “large” zip files. In this case, “large” is defined as being greater than 2GB. It is very likely that many of the zip files that you download from the CNDA will exceed this size limit. Therefore, a version of the `unzip` command has been installed on the cnindsXX machines that does support large files. The `unzip` with large file support has been installed at `/usr/local/bin/unzip`. So you should use a command like:

```bash
% /usr/local/bin/unzip myfile.zip
```

to unzip large files downloaded from the CNDA.

Removing your username and password from the cURL command line

It is not really a good idea to put your CNDA username and password in cURL command lines. It is probably even less of a good idea to embed your CNDA username and password in scripts that you’ve written to use cURL to download sets of files.

One way to avoid this is to use the `-n` command line option on the `curl` command. This option causes cURL to look in the user’s home directory for a file named `.netrc`(_`netrc` on Windows) for the user’s login name and password.

Lines in your `.netrc` file take the form:

```
machine <host-name> login <user-name> password <password>
```

where you substitute the machine name for `<host-name>`, your username for `<user-name>`, and your password for `<password>`.

You should protect your `.netrc` file so that only you can read or write it. Use the following command to properly protect your `.netrc` file.

```bash
% chmod u+rw-x,go-rwx .netrc
```
Once you’ve created the *.netrc file, you can leave the \-u option out of your curl command lines and replace it with \-n.

An alternative to cURL: wget

Another command line tool that can be used to download files with specified URIs is the *wget* tool. A command of the following form should download the appropriate zip file from the CNDA:

```bash
% wget --http-user your_CNDA_username
    --http-passwd your_CNDA_password
    -O desired_name_for_zip_file
    "https://cnda.wustl.edu/REST/projects/..."
```

Note that this command should be issued all on one line as opposed to being broken across lines as the example shows. Also note that the \-O option is a hyphen and an uppercase letter O. The lowercase letter o means something entirely different and should not be used. The numeral zero, 0, does not work either.

If you have created a *.netrc file as described in the previous section, you will not need to specify your username or password on the command line. *wget* will automatically look in your *.netrc file for that information. So then your *wget* command will look something like the following:

```bash
% wget -O desired_name_for_zip_file "https://cnda.wustl.edu/REST/..."
```
Using Neuro-Imaging Laboratory (NIL) Resources to Store, Preprocess, and Analyze fMRI Data
Author: Timothy B. Brown
Date: 26 Apr 2010

Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Apr 2010</td>
<td>• Added instructions on using sed to modify xstartup file.</td>
</tr>
<tr>
<td>12 Apr 2010</td>
<td>• Added note about unzipping large zip files using the version of the unzip command which has been compiled to have large file support.</td>
</tr>
</tbody>
</table>
| 07 Apr 2010 | • Added explanation of using the `–o` option to the `curl` command for downloading files greater than 2GB.
• Added better description of using `wget` as an alternative to `curl`
• Added information about properly protecting a user’s `.netrc` file |
| 26 Mar 2010 | • Removed incorrect phone number for CNDA support contact.
• Added Document Revision History Section |