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Abstract

Decision making has both cognitive and affective components, but previous neuroimaging studies in this domain predominantly have

focused on affect and reward. The current study examined a decision-making paradigm that placed strong demands on cognitive control

processes by making reward payoffs contingent upon decision-making history. Payoffs were maximized by choosing the option that,

paradoxically, was associated with a lower payoff on the immediate trial. Temporal integration requirements were manipulated by varying,

across conditions, the window of previous trials over which the reward function was calculated. The cognitive demands of the task were

hypothesized to engage neural systems responsible for integrating and actively maintaining actions and outcomes over time and the top-down

biasing of response selection. Brain activation was monitored with functional magnetic resonance imaging (fMRI) using a mixed-blocked

and event-related design to extract both transient and sustained neural responses. A network of brain regions commonly associated with

cognitive control functions, including bilateral prefrontal cortex (PFC), bilateral parietal cortex, and medial frontal cortex, showed selectively

sustained activation during the task. Increasing temporal integration demands led to a shift from transient to sustained activity in additional

regions, including right hemisphere dorsolateral and frontopolar PFC. These results demonstrate the contribution of cognitive control

mechanisms to temporally extended decision-making paradigms and highlight the benefits of decomposing activation responses into

sustained and transient components.
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1. Introduction

Decision making is a fundamental aspect of human life,

involved in everything from choosing what clothes to wear

to choosing who to vote for in an election. Psychologi-

cally, decision making is intriguing in that it depends

on both cognitive and affective factors [14]. Neuroimaging
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approaches to the study of human decision making are

increasingly common and have led to substantial gains in

our understanding of the neural mechanisms underlying

decision-making processes.

The majority of research in this area has focused on

affective or motivational components of decision making.

The neural mechanisms of reward have been widely studied

in recent years, and studies have demonstrated multiple

dissociations in the neural systems underlying different

aspects of reward (for a review, see Refs. [6,31,40,53]). For

example, different mechanisms have been shown to underlie
h 23 (2005) 71–84
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the anticipation of and response to rewards [19,33,43], or

the learning [37,52] versus storage [35,42] of stimulus-

incentive associations. Such work has contributed in part to

the development of theories relating reward and punishment

signals, or dsomatic markers,T to the ongoing modification

of decision-making behavior on a day-to-day basis [4,5]. In

recent years, neuroimaging techniques also have been used

to study the influences of reward and affective mechanisms

on people’s decision-making behavior in economic situa-

tions [15,31,47,51].

In contrast to the focus on affect and reward, relatively

little attention has been paid to the role of higher cognitive

faculties in decision-making behavior. Nevertheless, many

decision-making situations require a high degree of self-

control. Although self-control is critical for modulating

reward-seeking behavior [12,29], neither the neurobiolog-

ical implementation of such control mechanisms nor the

nature of their influence on decision making is well

understood. The canonical form of self-control required in

such cases is the ability to inhibit pursuit of an immediate

reward that is associated with larger long-term costs.

Addiction represents a paradigmatic example: the system-

atic bias drug addicts exhibit towards short-term pleasure at

the expense of long-term well-being is often attributed at

least in part to a dysfunction of impulse control, that is, of

cognitive mechanisms normally responsible for inhibiting

pursuit of immediately available rewards when there are

unpleasant consequences attached to them [30,58]. Individ-

uals with intact control mechanisms presumably experience

some of the same impulses as addiction-prone individuals

but are better able to constrain their choice of the immediate

pleasure. Cognitive mechanisms that subserve both inhib-

itory processing and the abstract internal representation of

future states may be critical for self-controlled decision-

making behavior. There is a growing experimental literature

specifically focusing on self-control in decision making

[25,38,45], which use a variety of laboratory tasks such as

the temporal discounting paradigm [26].

A second factor that suggests the importance of cognitive

control mechanisms in decision making is that in many real-

world decision-making situations the environment is

dynamic and non-stationary. Thus, a given choice may

produce a different outcome than it had on a previous

occasion because the environment is in a different state. The

incentive value of a particular stimulus often is not constant

through time, but instead depends on the organism’s

decision-making history. Foraging for prey provides a good

example of a non-stationary sampling process. A predator

remains in the same territory so long as there is available

prey. As the supply begins to diminish, the incentive to move

to a different area increases; however, the predator’s own

behavior contributes in part to the change in environment.

When prey is plentiful, the incremental cost to the predator of

eating another rabbit is very small; but the more rabbits eaten,

the harder it becomes to find the next one and hence the

associated cost increases. Similarly, the first alcoholic drink
that a person consumes at a party typically is rewarding and

has little or no associated costs. Each subsequent drink,

however, decreases the associated reward while increasing its

cost. In such situations, optimal decision-making behavior

requires one to detect such changes in the environment (or

one’s internal state) and dynamically update and flexibly re-

adjust decision-making biases accordingly. Such strategic

flexibility is a hallmark of cognitive control and depends

upon mechanisms that can continuously monitor perform-

ance in an on-line manner and use this information to

dynamically regulate goal information.

A third aspect to decision making that suggests the

involvement of cognitive control processes is that decision-

making situations often require an adaptive allocation of

choices over time. This is particularly true in tasks involving

a non-stationary environment, such as those just discussed.

Under these situations, both past choices and their outcomes

must be tracked and integrated over time, such that valid

predictions can be generated regarding the expected current

and future outcomes associated with each choice. This

temporal integration component of decision making

describes social–economic games, such as matching pen-

nies, rock-paper-scissors, and iterated Prisoner’s Dilemma

games, in which players update their choice strategy based

on integrating over past experiences with an opponent.

Thus, one function of cognitive control mechanisms in

dynamic decision making may be to enable temporally

integrated information about past choices and their out-

comes to be translated into predictions regarding the

consequences of current choices, which can then serve as

biases on action selection [2].

Based on these considerations, the neural mechanisms

likely to be associated with self-controlled behavior,

dynamic updating of strategy, and temporal integration

during decision making should be the same ones associated

with cognitive control in other task domains that require

such control mechanisms. It is fairly well established that

the exertion of cognitive control across a wide variety of

tasks engages a reliable network of brain regions including

lateral prefrontal cortex (PFC), medial frontal cortex

(including the anterior cingulate cortex), and posterior

parietal cortex. Together, these brain regions are thought

to subserve a variety of control functions, including

inhibition, active maintenance, and updating or manipula-

tion of information stored on-line (i.e., in working memory

Refs. [8,11,54]). Interestingly, this set of brain regions is

quite distinct from those typically highlighted in past lesion

and neuroimaging studies of decision making. Such studies

have tended to focus on regions more closely associated

with affective or reward processing: ventral striatum,

amygdala, and ventromedial or orbital PFC [3,27,32,48].

What accounts for the discrepancy between our concep-

tual analysis and the accumulated neuroimaging results?

We suggest that in order to observe decision-making acti-

vity in brain regions subserving control functions it is

necessary to increase the demands placed on temporal



T. Yarkoni et al. / Cognitive Brain Research 23 (2005) 71–84 73
integration processes during task performance. Few neuro-

imaging studies have studied decision-making tasks that

involve non-stationary environments and temporal integra-

tion requirements (but see Ref. [40]), and none to our

knowledge explicitly has manipulated these components of

the task situation.

One potential reason for the relative lack of attention to

the influence of neural mechanisms of temporal integration

and cognitive control in decision making is that such

mechanisms may operate at time scales that are not always

easy to address with existing neuroimaging techniques. The

development of rapid event-related fMRI [10,50] enabled

researchers to analyze the neural response to decision-

making events on a trial-by-trial basis, providing a powerful

tool for looking at transient neural responses tied to

particular trials. This approach has proven instrumental in

understanding neural mechanisms of reward, which can be

studied at short time frames (e.g., an anticipatory period of

several seconds, followed by a momentary response to a

trial outcome). However, its utility is limited in cases where

the neural processes of interest are postulated to span

multiple trials or entire task blocks. Older blocked designs

provide greater power to analyze temporally extended

activation, but the interpretation of results in such designs

is problematic because of the difficulty in determining what

aspect of the task is associated with the neural activation in

specific regions. Thus, investigations focusing on transient,

trial-specific processes underlying behavior greatly out-

number those focused on sustained neural processes. Yet

information about sustained activation is potentially critical

to an understanding of decision-making situations that

impose a need for temporal integration, because such

integration likely requires active maintenance of information

across multiple trials. Similarly, neural representations of

mental strategies are liable to be reflected more strongly in

sustained activity than in transient, event-related activity

since participants may carry over the same strategy (e.g.,

balways select from the left deck of cardsQ) from trial to trial

but employ different strategies in different task blocks or

different conditions.

Mixed-design approaches to fMRI data recently have

been developed that allow neural activity during a task to be

decomposed into sustained and transient components

[16,57]. In many ways these designs optimize the various

trade-offs between block and event-related designs. They

are particularly useful when there is reason to suspect that

the neural activity associated with a particular task can be

attributed to separate sustained and transient components

(e.g., Ref. [9]). Most decision-making paradigms employed

in neuroimaging studies appear to meet this criterion. There

is a clear conceptual difference between neural processes

that take place during individual decision-making trials

(e.g., selection for action, anticipation, and experience of

outcome) and those that must be maintained across many or

all trials (maintenance of task instructions, evaluation of

multiple outcomes, differing response strategies). It also is
clear that these aspects interact such that changes in strategy

affect changes in behavior on individual trials, and vice

versa, providing further motivation for such a decomposi-

tion. However, owing perhaps to their relatively recent

adoption, mixed designs have not yet been applied to the

domain of decision making.

The aim of the present paper is to address the two

lacunae in the neuroimaging decision-making literature

discussed above: (1) the relative absence of neuroimaging

studies addressing cognitive influences on decision-making

behavior, and (2) the interplay between sustained and

transient task-related neural activity. To achieve these goals,

we studied a dynamic decision-making task in which the

demands for temporal integration of reward information

could be manipulated experimentally. We coupled this with

a state-item fMRI design that allowed us separately to

estimate sustained and transient components of neural

activation.

The experimental task was adapted from previous

behavioral [23,28,36], computational [17], and neuroimag-

ing studies [40] and involved repeated sampling from two

decks of cards, one of which maximized reward in the long

run and the other of which minimized it. Crucially, the

effects of each deck were delayed, so that repeated sampling

from the dgoodT deck resulted in a noticeable immediate

decrease in reward followed by a gradual increase over

succeeding trials, whereas repeated sampling from the dbadT
deck led to the opposite pattern of reward payoff. By

varying the size of the window (W) over which the delayed

effects accrued, we were able to manipulate the demand for

temporal integration, since as window size increases, it

becomes increasingly difficult to maintain all of the relevant

information (i.e., the rewards accumulated over the last W

trials) in mind. For example, a window size of 4 means

that the outcomes of the last 4 trials affect the potential

outcome of the current trial. On the basis of behavioral pilot

studies, we chose one condition in which most participants

successfully solve the task and prefer the good deck (W set

to 2 trials) and one condition in which most participants

develop a strong preference for the bad deck (W set to 12

trials). The contrast between these two conditions allowed

us to identify (a) neural mechanisms reflecting the general

need for temporal integration in both conditions (i.e.,

activations common to both conditions), and (b) differences

in the pattern of neural activity during optimal (W2) versus

suboptimal (W12) decision making.

Consistent with the notion that temporal integration

during decision making depends primarily on general

cognitive control mechanisms, we hypothesized that both

conditions would be associated with sustained activation in

working memory-related brain areas since both require

participants to integrate substantial amounts of reward

information over time. It was not clear a priori, however,

what differences to expect in neural activity between

conditions. On the one hand, it seemed plausible that an

increase in window size from 2 to 12 trials would translate
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into a greater need for temporal integration in the latter

condition. This would predict greater activation in cogni-

tive-control regions in the W12 condition, since activation in

these regions has been shown to scale with increasing task

demands [8]. On the other hand, because participants prefer

the bad deck in the W12 condition, and the magnitude of this

preference often is greater than the preference for the good

deck in the W2 condition, an alternative interpretation is that

in the W12 condition, individuals are insensitive to the

delayed temporal effects and respond only to the immediate

effect of switching decks (a large immediate increase or

decrease). On this account, W12 should impose relatively

fewer cognitive-control demands because participants may

assume that they have solved the task when they settle on

the bad deck and subsequently cease to attempt to integrate

information. Finally, it also is possible that the differences

between the two conditions would be more subtle and

emerge not as an overall trend towards greater cognitive

control-related activation in one condition than the other,

but in differential associations with sustained versus tran-

sient modes of processing. To test these various hypotheses,

we modeled sustained and transient neural activation

separately in each condition.

We were interested in identifying two types of brain

regions. First, to test the hypothesis that temporally

extended decision making requires sustained neural activa-

tion, we sought to identify regions showing a consistent

increase in sustained task-related activation relative to

event-related activity across task conditions. Thus, an

important constraint was that activation in these regions

could not interact with window size. Second, to examine

subtler changes in state and event-related activity between

conditions, we also identified regions where state or event-

related activity was significantly modulated by window size.
2. Materials and methods

2.1. Participants

Participants were 28 right-handed undergraduates at

Washington University in St. Louis or individuals from

the surrounding community (mean age = 22.4 years, SD =

3.6). All participants consented to participate in return for

financial remuneration ($25/h plus task earnings). Potential

participants with a neurological or psychiatric history were

excluded from the experiment, which was approved by the

Washington University IRB. Due to technical malfunctions

during neuroimaging, two participants did not complete

both conditions. Results are therefore reported only for the

26 participants with intact data.

2.2. Experimental task

The computerized decision task was adapted from

previous experiments (e.g., Ref. [28]) and was instantiated
as a card game in which participants made repeated

selections from one of two decks. Participants were

provided with the following instructions: bThe task is to

draw cards from one of two decks to earn money. Each time

you see a question mark, you should choose a card from the

left or right deck. Some cards pay more money and others

less money; money is never lost. The two decks are

different, and there is a way to earn significantly more or

less points. You will be paid real money for each point. Try

to earn as much as possible.Q Participants were given

practice trials to familiarize them with the task, but not told

anything further and were left to figure out how to earn as

much as possible.

Choice of one deck always paid out a larger immediate

reward than the other deck, but decreased the amount of the

reward to be received from both decks over the next several

trials. In contrast, choice of the other deck paid a smaller

amount immediately following its selection on a given trial

but increased the amount to be received from both decks

over several following trials. Thus, repeated choice of the

locally optimal deck, what we call the bad deck (i.e., the one

with the highest immediate reward), leads to the global

minimum in terms of total earnings. Conversely, the

globally larger reward is earned from repeatedly choosing

the deck that pays off less on any given trial, which we call

the good deck because it leads to the global maximum.

The amount of points earned on a given trial was

computed to be the sum of four separate quantities: (a) a

constant base amount (awarded regardless of choice); (b) a

long-term effect (dependent on choice history); (c) a smaller

immediate effect (dependent only on current selection); and

(d) a small amount of random noise. A formal reward

equation is provided in Appendix A; however, two features

of the reward computation are important to note here. First,

the long-term effect is greater than the short-term effect (in

the current study, the short-term effect was 2 points and the

long-term effect was 4 points; see Appendix A for further

details). Second, a selection from one of the two decks,

hereafter referred to as the good deck, served to increase the

long-term effect but at the same time also decreased the

short-term effect. Because of the greater impact of the long-

term effect on reward, repeated selection from the good

deck would lead to the global maximum of reward payoff.

Yet because of the paradoxical reduction in the short-term

effect, this benefit of good deck selection could take a

number of trials to accrue. In contrast, selection from the

other deck, hereafter referred to as the bad deck, did not

positively impact either the long- or short-term payoff.

Consequently, repeated selection from the bad deck would

lead to only the baseline amount being awarded (i.e.,

the global minimum payoff). The reward function can also

be conceptualized in terms of deck-switching effects. A

switch in deck selection from the good deck to the bad deck

will cause an immediate increase in reward but also a

delayed reduction in the amount that can be accrued.

Conversely, a switch from the bad deck to the good deck
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number of points earned or lost is revealed after a brief delay. Cumulative

earnings also are displayed.
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will not cause an immediate increase in reward payoff (and

can even cause an immediate decrease) but will have a sub-

stantial delayed beneficial effect on the amount of reward

that can be accrued.

Another variable that also impacted the reward payoff

was the number of trials over which the long-term effect of

choice accrued. This variable, hereafter referred to as the

window size or W, determines how many of the previous

trials (up to and including the current one) must be taken

into account when calculating the amount awarded on the

current trial. For example, if W is set to 2, only choices

made on the current trial and the one before it affect the

amount earned. As W grows, the delay between choice and

change in reward increases. If W is very large – say, 12 –

decisions made a long time ago (i.e., more than 10 trials

back) still influence the amount earned on the current trial.

Because of this dynamic, value of W has a substantial

impact on the difficulty of the task. The larger the value of

W, the greater the number of trials over which the long-term

effects accrue. As a result, the magnitude of increment or

decrement in the long-term effect per trial becomes

increasingly smaller. However, the magnitude of the

immediate effect remains constant independent of W. As a

result, the balance between immediate and long-term

rewards is shifted and participants become more sensitive

to the immediate effect because the long-term effect is

harder to detect. For example, when W is small, the reward

amount due to the long-term effect changes in large

increments (e.g., for W = 2, the delayed effect increases

by 2 points per trial, when using the long-term value chosen

in the current study). Under such conditions it is relatively

easy for participants to detect this effect and come to

preferentially choose the good deck even though such

choices do not always provide an immediate increase in

reward. If, however, W is set to a larger value, say 12, then

the contribution of the long-term effect changes in very

small increments (e.g., only one-third of a point on each

trial, given the values used in the current study). Moreover,

because the reward amount participants receive is always

rounded to the nearest integer, in some cases changes in

participants’ behavior may not show up as an increase in

reward payoff for several trials. Consequently, participants

are much more likely to fail to discern the underlying

pattern of the long-term effect when W is large than when it

is small and therefore less likely to exercise appropriate

cognitive control. Thus, increasing W should lead directly to

poorer decision-making performance (i.e., reduced fre-

quency of selection from the good deck and a lower amount

of total reward amount received in the experiment).

In the present study, W was set at 2 in one condition and

at 12 in the other condition (W2 and W12, respectively).

Performance was defined as the percentage of choices from

the good deck (range: 0–100%; 50% = no consistent

preference or chance performance). Because trials on which

participants completely failed to respond resulted in no

reward, omissions (1.4% of all trials across all participants)
were grouped with dbadT selections for the purpose of

computing choice performance.

Stimuli were presented centrally on a Macintosh visual

display, using Psyscope software [13]. Each trial began with

the presentation of two decks of cards faced down, with a

question mark appearing midway between them (see Fig. 1,

top). The display was presented until the participant pressed

one of two response keys (to indicate deck choice), from a

specially constructed button box. If a response was not

made within 2500 ms, the trial was scored as bno response.Q
Immediately after a choice was made, the corresponding

deck was bturned overQ to reveal a number, representing the

amount earned on that trial (Fig. 1, bottom). This outcome

display lasted for a variable period no greater than 5000 ms

(participant’s response time + outcome display = 5000 ms).

The response time, deck chosen, and amount earned were

recorded, and cumulative earnings were updated on each

trial. A variable inter-trial interval then occurred which

ranged from 0 to 5 s (in steps of 2500 ms). The variability

(jittering) of the inter-trial interval enabled event-related

responses to be estimated for each trial type.

2.3. Neuroimaging procedures

To accommodate fMRI scanning, participants performed

the task as 8 scanning runs of 40 card choice trials per run,

yielding a total of 160 trials per task condition (W2 and

W12). All 8 runs were performed consecutively on the same

day. Winnings were updated across runs, and participants

were explicitly instructed that they were doing the same
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task. After four runs, they were informed that they now were

doing a task that looked the same but was, in fact, a different

task, and that they should approach it bstarting from

scratch.Q The order in which the two conditions were

performed was counterbalanced across participants.

Whole-brain images were acquired on a 3-T head-only

Allegra System (Siemens, Erlangen, Germany), with a

standard circularly polarized head coil. Head movement

during scanning was minimized using pillows and tape.

Headphones dampened scanner noise and enabled commu-

nication with participants. Structural images were acquired

using an MP-RAGE T1-weighted sequence. Functional

images were acquired using an asymmetric spin-echo

echo-planar sequence (TR = 2520 ms, TE = 25 ms, flip =

908), sensitive to blood oxygen level-dependent (BOLD)

magnetic susceptibility. Each volume contained 40, 3.75-

mm thick slices (in-plane resolution 3.75 � 3.75 mm). Due

to a change in acquisition software, the last 12 participants

were erroneously scanned with 1.875 mm spacing between

slices (however, this change did not affect data quality,

given the imaging resolution and spatial smoothing used in

pre-processing).

Each scanning run consisted of alternating cycles of

task blocks (including task trials and jittered inter-trial

intervals) and fixation blocks. The inclusion of fixation

blocks was an important feature of the scanning design to

enable us to conduct state-item analyses. Task blocks were

20 trials in duration. Including interleaved fixations, each

block was approximately 150 s long. Fixation blocks

(denoted by a centrally presented crosshair) were 40 s in

duration. The first four images of functional runs were

discarded to allow for stabilization of longitudinal magne-

tization (indicated by T1 times). Each run lasted appro-

ximately 5.5 min.

Functional imaging data were pre-processed prior to

statistical analyses according to the following procedures.

All functional images were first temporally aligned across

the brain volume, corrected for movement using a rigid-

body rotation and translation correction [22,55], and then

registered to the participant’s anatomical images (in order

to correct for movement between the anatomical and

function scans). The data then were scaled to achieve a

whole-brain mode value of 1000 for each scanning run (to

reduce the effect of scanner drift or instability), resampled

into 3 mm isotropic voxels, and spatially smoothed with a

9 mm FWHM Gaussian kernel. Participants’ structural

images were transformed into standardized atlas space [56]

using a 12-dimensional affine transformation [60,61]. The

functional images were registered to the reference brain

using the alignment parameters derived for the structural

scans.

A general-linear model approach [21] was used to

estimate parameter values for both event-related responses

(item effects) and for sustained activity associated with the

entire task block (state effects). State effects can be

independently coded into the GLM, using an assumption
of a fixed-shape response of long duration (i.e., boxcar

convolved with a gamma function). The logic of this

approach is that the event-related effects should be decaying

back to baseline during inter-trial intervals, whereas state-

related effects should remain relatively constant and of

increased amplitude relative to blocks of fixation. In recent

work, this approach to GLM coding of sustained and

transient responses has been validated via both simulation

and empirically based methodological studies [57]. Event-

related effects were analyzed by estimating values for the

various time points within the hemodynamic response. The

duration of this epoch was taken to be 20 s (8 scanning

frames). The 8-point event-related estimates were then

cross-correlated with a standard hemodynamic response

function to compute an estimated event-related response

magnitude. Finally, the magnitude estimates for state and

event-related effects for each individual participant were

submitted to a group analysis using random-effects model

ANOVAs or t tests.

To identify brain regions showing either sustained or

transient activation during the decision-making task, we

used a conjunction approach that involved the application of

multiple contrast tests, with each set at a relatively low

threshold. Such procedures have been used in previous

studies [7,9,46], and we believe they optimize the trade-off

between sensitivity/power and false-positive protection (i.e.,

type I vs. type II error). In order for a brain region to be

accepted as selective for a particular effect, all voxels within

the region were required to be statistically significant (P b

0.05) in all tests for that effect (described below). Note that

the P b 0.05 threshold was applied to each map individually

and was not the overall family-wise error rate for the entire

analysis. The estimated overall level of protection is about

0.05N, where N is the number of maps entered into a given

conjunction (for a similar approach, see Ref. [24]). More-

over, a region was considered significant only if it contained

a cluster of 8 or more contiguous voxels. The cluster-size

requirement ensured an additional overall image-wise false-

positive rate of P b 0.05 [20,39]. Finally, to increase

interpretability, only positive activations were considered in

all of these analyses.

We conducted two distinct sets of analyses. First, to test

the hypothesis that different neural networks were selec-

tively associated with sustained versus transient processing

during the decision-making task, we separately identified

regions that showed either significantly greater state-related

activity than event-related activity, or significantly greater

event-related activity than state-related activity. Two con-

straints were that (a) the same pattern had to hold in both

W2 and W12 conditions, and (b) there could not be a

significant interaction between window-size (WIN: W2 vs.

W12) and temporal dynamics of activation (DYN: state vs.

effect). These constraints ensured that activation in the

resulting regions reflected only a main effect of DYN that

was not significantly moderated by WIN. This first

analysis yielded two maps, one containing regions that
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displayed greater event-related than state-related activity,

and the other containing regions that showed the opposite

pattern.

Second, to test whether activity in some brain regions

displayed a significant WIN effect or WIN � DYN

interaction (for instance, significantly greater state-related

activity in W2 relative to W12, but no differences in event-

related activity), we conducted a series of conjunction

analyses that combinatorially tested for all possible patterns

of differences in activity. Specifically, it was possible for (a)

both sustained and transient neural activity to be greater in

one window-size condition than in the other; (b) sustained

but not transient activity to be greater in one condition than

the other; and (c) transient but not sustained activity to be

greater in one condition than the other. Since there were

two directions for which any of the above could be true

(i.e., W2 N W12 or W12 N W2), there were six conjunctions

in all. Table 1 lists the individual effects that were entered

into each conjunction.

There were several constraints imposed on each test.

First, in addition to significant differences between con-

ditions for a particular effect type, a region also had to show

activity that was significantly different from baseline

fixation. Second, a stipulation for the four conjunctions that

tested for increases specific to one DYN effect (e.g., greater

state-related activity but not greater event-related activity)

was that regions also had to show a significant WIN � DYN

interaction. Conversely, for the two conjunctions testing for

increases common to both DYN effects (state/event), we

stipulated that regions not show a WIN � DYN interaction.

Finally, an additional constraint for the 4 DYN-specific

conjunctions was that only activity in the DYN condition

(state/event) under consideration showed a significant WIN

effect in the direction being tested.

To illustrate, consider the analysis testing for regions that

showed greater state-related activity in W2 than W12 but not

greater event-related activity. For this test, the following

effects were entered into the conjunction: (a) W2 state-

related activity significantly greater than W12 state-related

activity; (b) W2 state-related activity significantly greater

than baseline; (c) W2 event-related activity not greater than

W12 event-related activity; and (d) significant WIN � DYN

interaction. The use of these multiple constraints thus

ensured conceptual consistency while making the overall

analysis more conservative.
Table 1

Effects entered into individual conjunction analyses

Conjunction Description Sustained

1 W2 greater overall W2 N W1

2 W2 greater sustained W2 N W1

3 W2 greater transient W2 not N

4 W12 greater overall W12 N W

5 W12 greater sustained W12 N W

6 W12 greater transient W12 not
3. Results

3.1. Behavioral performance

To verify that the WIN manipulation had the intended

behavioral effect, we compared choice of the good deck in

the short-WIN condition (W2) with that in the long-WIN

condition (W12). Mean percentage choice of the good deck

for the W2 and the W12 conditions were 71% and 23%

across all trials, respectively, and each differed significantly

from chance (t(25) = 6.4 and �12.5, respectively, both Ps b

0.001) as well as from each other (t(25) = 10.41, P b 0.001).

Moreover, all 26 participants performed better in W2 than in

W12 (i.e., made more choices of the good deck and earned

more money).

3.2. fMRI data

Table 2 lists all clusters that showed significantly greater

state-related activity than event-related activity in both the

W2 and W12 conditions relative to the fixation baseline

(Table 2, state N event; Fig. 2, green). As predicted, the

majority of clusters fell within putative cognitive control

regions, including bilateral PFC, medial frontal cortex,

parietal cortex, and lateral cerebellum. The magnitude of the

state- and event-related responses for a representative region

(right inferior parietal cortex) is illustrated in Fig. 3A. The

network of regions showing greater event-related than state-

related activation was more widespread (Table 2; event N

state), recruiting both posterior cortical regions likely

associated with perceptual encoding and response execution

(e.g., visual and somatomotor cortex), along with subcort-

ical regions potentially involved in reward processing and

choice selection (e.g., basal ganglia, amygdala, ventrome-

dial frontal cortex). The diffuse nature of the activation was

likely due to the non-selective nature of the event-related

contrast (i.e., comparison against fixation) and the fact that

transient activation is in general likely to be more wide-

spread than sustained activity. Because our analysis

procedure did not decompose more general transient

components of task processing from those selective to

decision making, we do not speculate further on the

significance of this event-related activity. The decomposi-

tion of event-related activity is best accomplished by

comparing different kinds of trials to each other based on
effect Transient effect WIN � DYN

interaction

2 W2 N W12 No

2 W2 not N W12 Yes

W12 W2 N W12 Yes

2 W12 N W2 No

2 W12 not N W2 Yes

N W2 W12 N W2 Yes



Table 2

Co-ordinates for significantly activated regions

Contrast BA Coordinates Size (mm3)

x y z

State N event (both conditions)

Left frontopolar cortex 10 �38 51 0 2079

Right dorsolateral prefrontal cortex 9 40 36 30 351

Left dorsolateral prefrontal cortex 6/9 �40 15 45 1323

Medial frontal cortex 8/32 �2 30 45 999

Right lateral temporal cortex 21 64 �36 �12 864

Left inferior parietal cortex 40 �46 �60 45 4509

Right inferior parietal cortex 40 46 �57 45 2619

Left lateral cerebellum �34 �72 �48 1107

Right lateral cerebellum 44 �75 �42 756

Event N state (both conditions)

Ventromedial frontal cortex 10 �2 60 0 1323

Anterior cingulate cortex 24/32 2 3 39 972

Supplementary motor cortex 6 2 �15 72 2484

Left primary motor cortex 4 �34 �30 66 2970

Left somatomotor cortex 1/2/3/4 �56 �21 �30 10,260

Right primary motor cortex 4 50 �6 42 5778

Left superior temporal cortex 22 �50 6 �6 972

Left ventral temporal cortex 18/37 �28 �51 �18 15,795

Right tempoparietal cortex 22/40 56 �36 24 10,854

Left superior parietal cortex 7 �26 �57 48 1242

Right inferior parietal cortex 40 26 �72 36 11,097

Left occipitoparietal cortex 19 �28 �84 15 11,502

Striate visual cortex 17/18 8 �75 �3 27,081

Left extrastriate visual cortex 18/19 �34 �78 �9 31,455

Right extrastriate visual cortex 18/19 38 �72 �6 60,021

Left insula/basal ganglia/thalamus �20 �9 6 39,879

Right insula/basal ganglia 26 �6 15 12,339

Right insula 34 3 0 19,386

Right thalamus/brainstem 10 �30 �6 45,009

Right amygdala/parahippocampal gyrus 28 0 �27 1674
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outcome measures (e.g., reward earned), an analysis which

is beyond the scope of the current report (but see Ref. [62]

for such analyses).

Of the six focused conjunction analyses described in

Table 1, only two yielded significant results. Several
Fig. 2. Brain regions showing significant activation for analyses reported in

the text. Green: regions showing greater state-related activity than event-

related activity in both experimental conditions. Blue: regions showing a

selective increase in state-related activity in W12 relative to W2. Red:

regions showing a selective increase in event-related activity in W2 relative

to W12. Purple: overlap between blue and red regions.
regions showed significantly more state-related activity in

W12 than in W2 but no differences in event-related activity

(Table 3, W12 state N W2 state; Fig. 2, blue), and several

showed more event-related activity in W2 than in W12 but

no differences in state-related activity (Table 3, W2 event N

W12 event; Fig. 2, red). Interestingly, a number of the

regions showing relatively greater state-related activity in

the W12 condition than in the W2 condition were contiguous

with regions showing greater state-related activity in both

conditions. This pattern held true bilaterally in inferior

parietal cortex and in left lateral cerebellum. Magnitudes for

event- and state-related activity in right inferior parietal

cortex are depicted in Fig. 3B. It is important to remember

that regions showing a greater sustained response in the

W12 than in the W2 condition (blue) were constrained in

that they also had to show an interaction between window-

size (W2 vs. W12) and type of activity dynamics (state vs.

event), whereas regions showing a larger state-related

response in both conditions (green) were constrained not

to show such an interaction. Thus, the fact that these two

types of regions are contiguous in several cognitive control

areas is by no means forced and likely reflects increased

recruitment of additional regions in W12, presumably in



Fig. 3. Estimated magnitude of sustained and transient neural activity as a function of experimental condition for 3 selected regions. (A) Activation for a region

of right inferior parietal cortex displaying greater state-related activity than event-related activity in both conditions. (B) Activation in a contiguous region

displaying a selective state-related increase inW12 relative toW2. (C) Right frontopolar region showing both greater state-related activity inW12 than inW2 and

greater event-related activity in W2 than in W12.
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response to increased task demands. We return to this point

below.

It also is intriguing to note that the only two conjunction

analyses that provided significant results did so in opposite

directions. In the W12 condition, several regions showed

greater state-related activity, but no regions showed greater

event-related activity; in the W2 condition, several regions

showed greater event-related activity but not state-related

activity. Were these results due to chance, we would expect

an approximately equal distribution of regions showing

greater state- and event-related activity in both the W2 and

W12 conditions. Moreover, because the two observed

effects were potentially compatible (i.e., a region could in
Table 3

Co-ordinates for significantly activated regions

Contrast BA Coo

x

W12 state N W2 state

Right frontopolar cortex 10/46 40

Right dorsolateral prefrontal cortex 8/9 14

Right ventral prefrontal cortex 47/11 16

Left extrastriate cortex 19/20 �56

Left tempoparietal junction 39 �56

Right tempoparietal junction 39 50

Right inferior parietal cortex 40 50

Left superior parietal cortex 7 �14

Medial rostral cerebellum �20

Lateral cerebellum �50

W2 event N W12 event

Right frontopolar cortex 10/46 40

Right dorsolateral prefrontal cortex 8/9 14

Left lateral temporal cortex 21 �62

Left superior parietal cortex 7 �16

Medial rostral cerebellum �20

Uncus 28 22

W12 N W2 state + W2 N W12 event

Right frontopolar cortex 10/46 40

Right dorsolateral prefrontal cortex 8/9 14

Left superior parietal cortex 7 �14

Medial rostral cerebellum �16
principle show both relatively greater state-related activity

in W12 and relatively greater event-related activity in W2),

we conducted an overlap analysis to determine whether any

regions were sensitive to both effects. Four regions

survived this test (Table 3, W12 state N W2 state AND

W2 event N W12 event; Fig. 2, purple), two of which were

located in right prefrontal cortex, one in the left superior

parietal lobe and one in rostromedial cerebellum. The

magnitudes of the event-related and state-related activity

are displayed for the region in right frontopolar PFC (Fig.

3C). A crossover interaction is clearly evident; an

identical pattern of results holds in the other three regions

(not depicted).
rdinates Size (mm3)

y z

42 3 891

45 42 621

33 �18 405

�33 �27 1296

�60 24 1620

�60 33 4671

�60 51 216

�69 60 270

�27 �36 864

�63 �33 999

45 6 459

48 42 621

�6 �9 405

�69 60 513

�30 �30 486

6 �27 918

42 6 459

48 42 486

�69 60 270

�30 �33 216
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This type of crossover pattern between more event-

related activity inW2 and more state-related activity inW2 is

strongly suggestive of a change in processing mode,

whereby different temporal dynamics govern activation in

these regions depending on task condition. If the cross-over

pattern is indicative of a trade-off or shift between sustained

and transient processing modes, then the pattern should be

observable at the level of individual differences as well.

Consequently, a prediction suggested by a sustained-

transient processing mode shift across conditions is that

individuals who show a greater difference between W12 and

W2 state-related activity should show a correspondingly

greater difference between W2 and W12 event-related

activity. We tested this prediction by computing the Pearson

correlation coefficient between the differences in state-

related and event-related activity estimates (i.e., W12 state �
W2 state correlated with W2 event � W12 event) within each

of the four brain regions that showed the crossover pattern.

A strong positive correlation was found in all four regions

(rs = 0.57 � 0.78, all Ps b 0.003). That is, the greater a

participant’s sustained response in the W12 condition

relative to the W2 condition, the greater his or her event-

related response in the W2 relative to the W12 condition.

We then examined how specific this correlational effect

was to the regions identified with the group-level cross-over

interaction pattern. To test specificity, we performed an

identical correlational analysis on 10 other regions, includ-

ing 3 regions that displayed greater state-related activity

than event-related activity in both conditions (Fig. 2, green)

and 7 randomly selected regions that did not appear in any

of our analyses. Surprisingly, similar effect sizes were

obtained in all cases (all rs N 0.62, all Ps b 0.001). Thus the

trade-off between sustained and transient neural activity

appears to be pervasive at the level of individual participants

and is observable even in regions that at the group level

were constrained not to show an interaction between task

condition and effect type. This result is not easily inter-

pretable in the present context, but it is potentially sug-

gestive of a more general relationship between sustained

and transient neural activity during task performance.
4. Discussion

As predicted, greater state-related activation common

across both the short and long decision-making conditions

was observed almost exclusively in brain regions associated

with working memory and cognitive control, namely lateral

PFC, medial frontal cortex, and parietal cortex. This finding

supports our analysis that the choice task requires tempo-

rally extended integration of information, a capacity

subserved by neural mechanisms that actively can maintain

internal representations over sustained intervals [8,11,54]. In

contrast, event-related activation was extremely diffuse and

included most of the visual and motor cortex, in addition to

both working memory and reward processing regions. Thus,
whereas the transient activation locked to specific trials

likely reflected perceptual and motor planning processes as

well as the neural response to reward outcomes, sustained

activity appeared to engage primarily working memory

circuits associated with maintenance of information on-line.

In the present context, such activation could reflect either

the simultaneous representation of multiple trial outcomes

(as participants attempted to extract a pattern) or the

sustained representation of active strategies (such as the

intention to continue choosing from a particular deck).

Interestingly, only event-related but not state-related

activation was found in reward- or punishment-related

regions such as the ventromedial frontal cortex, amygdala,

or ventral striatum, providing support for the hypothesis that

there are dissociable contributions of affective-motivational

and cognitive neural systems to decision-making behavior.

Previous studies have suggested that affective-motivational

brain regions such as the striatum and ventromedial frontal

cortex are involved in representing the anticipation or

response to individual rewards (e.g., Refs. [18,49]). How-

ever, there is no reason to presume that the same regions

also must be involved in the prediction, integration, and

representation of those outcomes at a higher level. It may be

more parsimonious to suppose that temporal integration

functions rely on the same neurocognitive mechanisms

regardless of whether the contents they operate over happen

to be past actions and rewards or some other type of

information more commonly associated with working

memory (numbers, words, etc.). Our results appear to sup-

port this notion.

As expected, there were striking differences in the choice

responses of the participants in the two conditions of the

task. These differences were reflected by greater focal state-

related activity in the W12 condition than in the W2

condition, and greater focal event-related activation in the

W2 than in theW12 condition, with no other patterns present.

As noted above, the state-related increases in the W12

condition were mostly located in regions contiguous with

areas that showed greater state-related than event-related

activity in both the W2 and W12 conditions, suggesting that

increased task demands in the W12 conditions result in

increased recruitment of these regions. Also consistent with

this interpretation, several regions exhibited non-selective

state-related activation in one hemisphere but W12-specific

state-related activation in the contralateral homologue. This

pattern was present in both lateral temporal cortex and

frontopolar cortex and is consistent with research suggesting

that the contralateral homologue of a task-relevant region

often comes on-line as the task-related load increases

[44,59]. Thus, taken together, the results suggest an

interpretation in which the increasing demands on temporal

integration from the W2 to the W12 condition produce a

corresponding increase in sustained activity in parietal and

prefrontal regions. This increased activity could reflect the

extra processing resources devoted to carrying out temporal

integration operations.
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As appealing as this account may be, it runs into

difficulty explaining the differences in choice behavior

between the two conditions. Specifically, participants

exhibited extremely poor self-control in the W12 condition,

showing a strong preference (77% of selections) for the bad

deck. This is problematic in that it is not immediately clear

why participants recruit greater cognitive control when

performance is so poor. One alternative possibility that can

account for the behavioral performance pattern is that

participants may have employed a win–stay lose–shift

(WSLS) strategy throughout the experiment, staying with

the same deck following an increase in reward and switch-

ing decks following a decrease in reward [41]. Such a

strategy is consistent with the poorer performance in the

W12 condition because the immediate gain associated with

the bad deck is more noticeable than are the delayed gains

associated with the good deck. A WSLS strategy, however,

is not consistent with the observed pattern of brain

activation. First, such a strategy is thought to be fairly

automatic, reactive to specific outcomes, and require little

sustained cognitive effort. It therefore does not explain the

observed sustained activity in control-related brain regions.

Second, a WSLS also provides no obvious explanation for

the increase in sustained activity in these regions in the W12

condition relative to the W2 condition.

Another possibility that might account for both the

behavioral and neuroimaging results is that greater sus-

tained activation in the W12 condition may correspond not

to increased temporal integration, but to increased reliance

on an acquired strategy that must be maintained throughout

the task. On this account, the critical variable relating

behavioral performance to neural activity is not success per

se but absolute difference from chance. In other words,

although participants performed poorly in the W12 con-

dition (23%), the degree to which they selected from the

bad deck suggests they had developed a strong and

consistent preference for it (after all, no preference =

50%) and were not simply guessing. In contrast, although

participants developed a preference for the good deck in the

W2 condition, the magnitude of this preference above the

no preference point (71%–50% = 21%) was somewhat

smaller than the degree of preference below that of

no preference in the W12 condition (50%–23% = 27%).

This difference in magnitudes was marginally significant,

t(25) = 1.94, P = 0.06. The fact that greater state-related

activation in the W12 condition also was found in a region

of right frontopolar prefrontal cortex further supports this

view. Previous research suggests a role for this area in

complex planning and subgoal processing [1,7,34], a

characterization consistent with the representation of a

strategy for repeated selection over time. Finally, in a

previous report based on the same data but using an

individual differences approach [62], we found that greater

event-related activity in right dorsolateral PFC predicted

poorer performance in the W2 condition but better perform-

ance in the W12 condition, possibly reflecting the fact that
some participants were less likely to rely on strategy and

more likely to guess on the W2 trials.

It is important to note that the increasing difficulty of the

task as W increases is due to a number of factors that cannot

be dissociated. First, as the number of trials over which

reward is computed increases, participants are required to

keep track of their behavior over an increasing number of

trials, imposing greater working memory demands; second,

the incremental change in reward decreases, making trial-to-

trial change more difficult to discern; and third, because the

amount of noise added to the reward function is constant

across different values of W, the ratio between reward and

noise level decreases as W increases. The precise influence

of these factors cannot be dissociated within this paradigm

without altering several parameters besidesW. However, our

goal in this initial study was not to parameterize the

relationship between performance and the various quantities

in the reward equation but to investigate the role of

cognitive control in decision making. The important point

for our purposes is that increasing W systematically

increases the difficulty of the task by imposing increasing

demands for cognitive control, allowing comparisons to be

made across conditions with differential control demands.

Given the present results and the difficulty in decom-

posing various effects of the window-size manipulation, it is

not possible to adjudicate between the temporal integration

account and the strategy–representation account. Future

studies will be needed to more carefully and systematically

manipulate various experimental factors related to the

reward–payoff function. For example, a less-extreme

manipulation of the window-size parameter might allow

for a more powerful way to test for the presence of temporal

integration effects. In particular, it would be ideal to use a

window-size value at which choice of the good deck was

significantly lower than in the W2 condition, but still

significantly greater than chance (e.g., 60% good deck

selections). In such a condition, the temporal integration

account predicts a smaller but still significant increase in

sustained activity in comparison to the W2 condition. In

contrast, a strategy-maintenance account should predict less

sustained activity than in theW2 condition, because the deck

preference would be less strongly established (i.e., closer to

50%). The ability to incrementally manipulate window size,

and hence deck preference, with this paradigm suggests that

such a study is feasible.

The overarching goals of the current study were both

conceptual and methodological. Conceptually, our goal was

to demonstrate that temporally extended decision making

relies upon neural mechanisms associated with cognitive

control. Methodologically, our goal was to demonstrate the

utility of hybrid state-item designs in the decision-making

domain. These goals were synergistic since our primary

hypothesis was that there would be a qualitative distinction

in activity dynamics between brain regions subserving

temporally extended control processes and those associated

with the anticipatory and response components of individual
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trials. The results confirm this hypothesis and further

suggest that experimental manipulations of temporal inte-

gration demands produce selective effects on sustained and

transient activation.

It is not possible to state with certainty that the state-

related effects we obtained are attributable to a task-related

demand for integration of temporally extended information

or sustained maintenance of strategic information, but these

are both parsimonious interpretations that are empirically

testable. Regardless of the ultimate explanation, there is little

question that partitioning neural activity into transient and

sustained components in the present study provided infor-

mation that would have been unavailable using either an

event-related or a blocked design. Whereas the former design

overlooks maintenance-related activity and the latter design

provides non-specific temporal information, hybrid designs

can uncover a comprehensive spectrum of temporal dynam-

ics. Our understanding of decision making and choice

behavior, which involves a range of processes operating on

different time scales, should benefit from the application of

similar techniques in future neuroimaging studies.
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Fig. 4. Amount of reward as a function of deck selection over the previous

few trials. The global and local maxima are in direct opposition; hence,

reward maximization requires participants to endure a local reduction for

several trials before achieving the global maximum.
Appendix A

We present here the technical details of the reward payoff

function used in our experimental paradigm. Formally, the

payoff equation giving the reward, r, earned on trial j can be

expressed as:

rj ¼ Bþ L

PW�1

i¼0

cj�i

W
� Icj þ e

The four terms of this equation refer to the baseline

reward value (B = 4), the long-term choice parameter (L =

4), the immediate choice parameter (I = 2), and a random

noise component (e = +1 on 20% of trials, 0 on 60% of

trials, and �1 on 20% of trials). The long-term choice

component is computed by summing deck choices, c, where

c is a binary variable: a value of 1 denotes a choice from the

good deck, and a value of 0 denotes a choice from the bad

deck. Deck choices are summed over the previous W trials,

where W is the window-size variable (set to 2 in one

condition and 12 in the other), up to and including the

current trial j. The division by W gives a proportional value

between 0 and 1 that is then scaled by the long-term

parameter L. Note that an increase in the number of

selections made from the good deck over the last W trials

results in an increase in r. In contrast, the immediate choice
component is dependent only on the current choice cj and is

negative. Thus, a selection from the good deck on the

current trial decreases the current reward. Note also that the

scaling factor I for the immediate choice effect is only half

the size of the long-term choice effect L (i.e., 4 vs. 2). This

means that long-term choices will have a greater impact on

accumulated reward than immediate choices.

Fig. 4 provides a visualization of the reward function.

In this figure, the two parallel lines correspond to the

payoffs from the bad (top line) and good (bottom line)

decks. Notice that for any given point along the x-axis, the

payoff from the bad deck is always higher. However,

selections from these two decks dmoveT a participant in

different directions along the x-axis. Each selection from

the good deck moves the participant to the right, because

the percentage of good-deck selections made over the last

W trials (i.e., the x-axis) increases. In contrast, each

selection from the bad deck moves the participant to the

left along the x-axis. This dynamic corresponds to the

contradictory effects of the good and bad decks: the good

deck provides a smaller reward on the current trial but

increases reward in the long term (since it moves a

participant to the right, i.e., up the payoff line); con-

versely, the bad deck typically yields more on the current

trial but results in a smaller payoff on future trials.

Another way to express this dynamic is that repeatedly

selecting the local maximum (the bad deck) leads directly

to the global minimum, whereas repeatedly selecting the

local minimum (the good deck) leads to the global

maximum. This tension between immediate and delayed

reward is what gives rise to the need for cognitive control:

in order to perform optimally, participants must inhibit the

impulse to pursue immediate rewards in order to increase

their gains in the long term.



T. Yarkoni et al. / Cognitive Brain Research 23 (2005) 71–84 83
The equation parameters can be related to the graph in

Fig. 4 as follows. The y-intercept for the higher line

indicates the baseline value (B = 4 points) awarded on

each trial regardless of choice. The x-axis refers to the

percentage of good-deck choices made within the last W

trials; this percentage, expressed as a ratio and multiplied

by the long-term component (L = 4), is equal to the

contribution of the long-term (i.e., delayed) effect of

choice to the overall amount earned (range: 0 to 4 points).

The difference between the two parallel lines represents the

immediate effect of deck choice (I = 2 points). Thus,

selecting from the good deck on any given trial decreases

the number of expected points to be earned on that trial by

a value of I.

Finally, the parameter W can be conceptualized as the

number of steps it takes to go from one end of the reward

function to the other. For example, suppose W = 2, and a

participant has just earned 6 points by selecting the bad deck

(top line). If the participant were to then select the bad deck

again on the following trial, he or she would move all the

way down the rest of the line to the bottom (since it only

takes 2 steps to get from end to end). Consequently, the

participant would earn 4 points. However, if W had been set

to a large value, say 12, a second selection from the bad

deck would result in only a very small decrease in the

reward amount, since the participant would only move

1/12th of the way down the line.
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