Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models

ARTICLE INFO

ABSTRACT

Over the past two decades, the awareness of the disabling and treatment-refractory effects of impaired cognition in schizophrenia has increased dramatically. In response to this still unmet need in the treatment of schizophrenia, the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative was developed. The goal of CNTRICS is to harness cognitive neuroscience to develop a brain-based set of tools for measuring cognition in schizophrenia and to test new treatments. CNTRICS meetings focused on development of tasks with cognitive construct validity for use in both human and animal model studies. This special issue presents papers discussing the cognitive testing paradigms for animal model systems selected by CNTRICS. These paradigms are designed to measure cognitive constructs of interest within the domains of perception, attention, executive function, working memory, object/relational long-term memory, and social/affective processes.

Over the past two decades, the awareness of the disabling and treatment-refractory effects of impaired cognition in schizophrenia has increased dramatically. Cognitive performance deficits in schizophrenia patients are strongly and consistently related to behavioral disorganization and poor functional outcome (Green et al., 2004; Harvey and Bowie, 2012; Kitchen et al., 2012). Along with this awareness has come an increasing emphasis on the importance of developing new treatments to positively impact these deficits. The MATRICS meetings built a consensus between industry, academia, and the FDA on how to move forward in the development of therapies for impaired cognition in schizophrenia (Marder et al., 2004). During this same period there has been an explosion of technical advances and new knowledge regarding the neural bases of cognitive processes on one hand, and risk factors in schizophrenia on the other (Insel, 2010). These advances have come in the fields of genetics and genomics, human neuroimaging and neurophysiology, and systems neuroscience. Converging data from animal and human research have resulted in a dramatic increase in knowledge regarding the neurobiological mechanisms underlying cognitive functions. Along with these advances has come a new set of behavioral and non-invasive imaging tools that enable us to measure the integrity of cognitive systems along with the function of the neural systems that support them in human subjects, including those with schizophrenia and related disorders.

To capitalize on this knowledge, and to begin to develop a brain-based set of tools for measuring cognition in schizophrenia, cognitive neuroscientists and clinical researchers came together to initiate the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) process (Carter and Barch, 2007). The CNTRICS process has utilized meetings and surveys designed and organized by an executive committee (http://cntrics.ucdavis.edu/meetings.shtml) to bring together cognitive neuroscientists working in human and/or animal model systems, clinical researchers, systems neuroscientists with expertise in biomarker technologies, and preclinical translational behavioral neuroscientists. The inaugural aim, reflecting the cognitive neuroscience foundation of CNTRICS, was focused on enhancing the identification of cognitive ‘constructs’ – definable cognitive processes that can be measured at the behavioral level and for which there exist clearly hypothesized and measureable neural-circuit mechanisms. Efforts toward this aim came to fruition with the first CNTRICS meeting (Washington, DC, 2007) in yielding a scheme of cognitive domains and constructs within this domains considered to be most relevant to the cognitive impairments of schizophrenia (Carter et al., 2008). The next aims, addressed through two additional meetings, were to select and further develop cognitive neuroscience paradigms for use in humans that could selectively and parametrically measure these constructs at the behavioral level using tasks with a high degree of cognitive construct validity, but that could also be adapted to increase the parametric properties, reliability, exportability, and efficiency necessary for use in experimental medicine research and clinical trials (Barch et al., 2008, 2009c). CNTRICS participants selected tasks for measuring specific constructs in humans within the cognitive domains of Perception (Green et al., 2009), Attention (Nuechterlein et al., 2009), Executive Control (Barch et al., 2009b), Working Memory (Barch et al., 2009a), and Social and Emotional Processing (Carter et al., 2009). A table of the selected paradigms can be found at http://cntrics.ucdavis.edu/meetings.shtml

Abbreviation: CNTRICS, Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia.

0149-7634/ – see front matter © 2013 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.neubiorev.2013.09.011

In this Special Issue, we report on the component of CNTRICS focused on the development of neurobehavioral assays of cognitive and social processes affected in schizophrenia and applied in animal models. This initiative within CNTRICS was motivated by the observation that efforts to find new treatments for improving cognition in schizophrenia have not yet delivered efficacious compounds. We identified as a major gap in these efforts the fact that many of the behavioral assays commonly used to characterize cognitive deficits in animal models were not informed by recent advances animal cognition and, particularly, in our knowledge of the neural mechanisms underlying cognition. We also noted that most of these paradigms lacked adequate reliability, sensitivity and/or parametric properties necessary for detecting dose-dependent effects of drugs on cognitive abilities. We thus moved forward with the expectation that an iterative process integrating perspectives and expertise across investigators working in human and animal cognition would be necessary to fill this gap.

With the goal of improving integration and flow across preclinical studies and early phase human studies, we organized two CNTRICS meetings that brought together a broad range of researchers from both industry and academia with expertise in the use of animal models, spanning from rodent to non-human primate, to understand impaired cognition in schizophrenia (http://cntrics.ucdavis.edu/meetings.shtml). The first of these meetings (CNTRICS II: Developing Homologous Animal Models, St. Louis, April 2010) was focused on clarifying which CNTRICS constructs could be validly targeted for measurement using animal models. This meeting included extensive discussions on the criteria that can be used to evaluate what constitutes homology, at both the psychological and neural-substrate levels, between animal and human cognition. Specifically, we focused on issue of construct validity at two levels by addressing whether (1) the behavioral paradigm isolates the cognitive construct (i.e. from alternate mechanisms that might drive the behavior) by selectively varying task demands thought to tap specifically into the construct of interest and (2) the targeted cognitive process (and its behavioral manifestation) is mediated by the same neural circuits that are postulated to regulate the homologous process in the human. In the second meeting (CNTRICS II: Selecting Translational Animal Model Paradigms, Washington, DC, April 2011), we recommended for further development a set of animal cognitive testing paradigms that measure function within each of the CNTRICS constructs of interest. Like CNTRICS I meetings, this meeting was preceded by a survey sent to a broad range of investigators in the field, both industry and academic; this survey solicited ideas on specific paradigms, new or existing, that could be used to measure the CNTRICS constructs of interest and for screening of potential treatment effects on cognition.

The articles in this Special Issue report on discussions of the constructs and animal cognitive testing paradigms considered and selected in CNTRICS meetings. We focused on the cognitive constructs of interest selected in CNTRICS I for which homologous constructs could be measured in rodents and non-human primates. Table 1 summarizes the cognitive domains, constructs within each domain, and the cognitive testing paradigms selected for further development and implementation in animal models. Each paper in this issue covers one cognitive domain; each outlines the key issues relevant to using animal behavioral paradigms to study the constructs of interest, provides a summary of the paradigms considered, and then reviews each of the selected paradigms. For each of the selected behavioral testing paradigms experts in the field

<table>
<thead>
<tr>
<th>Table 1: CNTRICS constructs of interest and selected paradigms for animal model systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>Perceptual processes</td>
</tr>
<tr>
<td>Integration: The processes linking the output of neurons that typically encode local attributes of a scene into a global complex structure, more suitable to the guidance of behavior.</td>
</tr>
<tr>
<td>Attention</td>
</tr>
<tr>
<td>Executive function</td>
</tr>
<tr>
<td>Dynamic adjustments of control</td>
</tr>
</tbody>
</table>

Table 1 (Continued)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Selected paradigms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working memory capacity: The size of the array of items or events that can be held online while the animal uses that array to make choices.</td>
<td>Stimulus (usually odor)-span task: An extension of the delay non-match to sample in which an additional stimulus is added with each trial and the animal is required to identify the stimulus not previously sampled. N-back tasks: Stimuli are presented serially and continuously. Animal tracks a target stimulus but must wait until when cued to respond. Upon cue stimulus, the animal responds if target had been presented since previous cue. Memory load is a function of number of stimuli intervening between target and cue.</td>
</tr>
<tr>
<td>Interference control: The ability to hold required information over time in the face of competing, irrelevant information or intervening events.</td>
<td>Probability reinforcement learning: Assessing acquisition and adjustment an instrumental response according to probability of the reinforcer. Response-based probabilistic reward learning: The effect of differential reinforcement probability of two difficult-to-discriminate stimuli on response bias. Pavlovian autoshaping: Pavlovian appetitive conditioning to a cue in the context of an instrumental response that does not depend on the cue. Effort-related tasks (e.g. Progressive Ratio): Progressively or randomly increasing the effort required (response ratio, height of barrier, duration of responding) for each reward. Outcome devaluation and contingency degradation task: Assessing impact of reward devaluation (through saturation or negative association) on positively-reinforced responding.</td>
</tr>
<tr>
<td>Motivation and reinforcement learning</td>
<td>Probabilistic reinforcement learning: Assessing acquisition and adjustment an instrumental response according to probability of the reinforcer. Response-based probabilistic reward learning: The effect of differential reinforcement probability of two difficult-to-discriminate stimuli on response bias. Pavlovian autoshaping: Pavlovian appetitive conditioning to a cue in the context of an instrumental response that does not depend on the cue. Effort-related tasks (e.g. Progressive Ratio): Progressively or randomly increasing the effort required (response ratio, height of barrier, duration of responding) for each reward. Outcome devaluation and contingency degradation task: Assessing impact of reward devaluation (through saturation or negative association) on positively-reinforced responding.</td>
</tr>
<tr>
<td>Object/relational long-term memory</td>
<td>Paired associate learning: Animal is required to encode and retrieve object-location associations as a function the pairing of two objects (drawn from a larger set). Object in place scene learning: A variant of conditional discrimination requiring the animal to use a complex visual background (or context) to guide a choice between one of two possible cued responses (cues are presented in foreground).</td>
</tr>
<tr>
<td>Relational encoding and retrieval:</td>
<td>The processes involved in memory for stimuli/elements and their associations with coincident contexts, events or outcomes.</td>
</tr>
<tr>
<td>Social/emotional processing</td>
<td>Social recognition/preference: Variants include comparing responses to novel versus familiar social objects, social objects versus neutral or non-living objects. Outcome measures include approach, exploration time, species-appropriate social behavior, vocal. Emotional and intention recognition using visual scan of social scenes: Animals (usually non-human primates) are shown video/audio presentation of social signals from conspecifics (e.g. facial expressions, body movements, vocalizations). The task can require the animal to discriminate between affective states or individual conspecifics. In addition to the operant response (a saccade), gaze pattern/speed; reaction time to emotional versus non-emotional stimuli and autonomic responses are measured.</td>
</tr>
</tbody>
</table>

Discuss key structural elements of the paradigm, the known or hypothesized neural substrates and pharmacology of performance in the task, and challenges in task implementation. In addition to these ‘constructs and paradigms’ papers, we include a paper on the consideration of species differences in designing and interpreting behavior in such paradigms.

Throughout the CNTRICS II process, the primary criterion for task selection and development has been construct validity. In cognitive neuroscience, this form of validity is established by showing that performance in the task varies selectively as a function of demands on the targeted construct and is mediated by homologous neural circuit mechanisms in humans and the animal model species. The primacy of construct validity recognizes that predictive validity – that is, the ability of the paradigm to predict the efficacy of treatment or other manipulations to alter a specific cognitive function in schizophrenia patients – is the ultimate goal of translational research; and that predictive validity is a function of construct validity. To put this in concrete terms: (1) cognitive processes and the behaviors reflecting those processes are mediated by activity within specific neural circuits and (2) drugs act the biological level – to change neural circuit function. Thus, finding new cellular and molecular targets for treatments aimed at improving cognition in schizophrenia requires us to apply to our animal models cognitive paradigms that assay the function of neural circuits homologous with those hypothesized to mediate the cognitive construct of interest in humans. This approach also facilitates consideration of neurocognitive processes in the development of novel cognitive and behavioral-based treatment strategies.

Genetic and neurobiological disease models play an important and complementary role in this process. We introduce here the term ‘animal models’ here to refer collectively to researchers using genetic, neurodevelopmental, pharmacological, and behavioral manipulations in animals to study one or more putative pathogenic processes in schizophrenia. Animal modelers include geneticists studying mouse models that recapitulate or inform on risk genes, researchers developing models of perinatal risk factors, and cognitive and behavioral neuroscientists using manipulations that examine potential causal or mediating relationships connecting neuropathology, imaging or electrophysiological neuropathotypes, cognition, and behavior. Given the necessary breadth of research objectives embedded within the overall goal of using animal models to increase our understanding of schizophrenia, it is a challenge to make sure that the behavioral paradigms used to characterize these disease models maintain construct validity and, more generally, exploit important principles of cognitive neuroscience. The CNTRICS argument would be that although these goals are challenging, meeting them is critically important for understanding the neurobiology of cognitive deficits in schizophrenia and to predict the efficacy of putative pharmacotherapy. Specifically, the argument for these requirements is as follows: (1) schizophrenia is defined behaviorally, in large part by disruption of cognition and (2) most potential biomarkers of schizophrenia are proxies of neural circuit activity. Thus, neural circuit assays (which include behavioral tasks known to recruit and depend on specific circuits) are the ultimate assays for understanding the multitude of genetic and molecular mechanisms associated with the risk for schizophrenia, and for testing novel pharmacological treatments for cognitive enhancement. In addition, task properties such as reliability (in particular test–retest reliability for within-subjects measurement of drug effects), sensitivity to potential drug effects, and efficiency are critical to the success of these paradigms. Indeed, discussions at both CNTRICS Animal Models meetings recognized and prioritized these components of paradigm development. Nonetheless, it was also emphasized that these properties could not be achieved at the expense of cognitive and neurobiological construct validity.
The CNTRICS process, including this Special Issue, is not meant to be prescriptive or exclusive. Nearly 25 million people in the world suffer from schizophrenia or a related disorder. Moreover, schizophrenia-associated cognitive impairment accounts for a large proportion of the worldwide humanistic burden of the disorder (Kitchen et al., 2012), in part due to the lack of effective pharmacotherapy (Harvey and Bowie, 2012). So it should go without saying that we need multiple efforts at improving treatment discovery, with multiple perspectives. The CNTRICS process was informed by preceding innovative and well-developed translational cognitive testing systems (Geyer, 2008; Keeler and Robbins, 2011) and there has been considerable cross-fertilization among these initiatives. Further, we hope that one ramification of cognitive neuroscience-based efforts, including CNTRICS, would be greater reliance on cognitive and neurobiological construct validity in preclinical schizophrenia research. This sentiment applies to research in animal model systems designed to recapitulate a genetic or pathophysiological mechanism in schizophrenia (‘disease models’), as well as to animal experiments designed to understand pharmacological modulation of a specific cognitive process affected in the disease. Whether researchers apply the paradigms selected in the CNTRICS process, adapt a paradigm that they already find useful, or develop new paradigms (e.g. Simpson et al.), the necessary steps in paradigm selection should be to harness the rich literature in experimental psychology and cognitive neuroscience to define and measure the cognitive process(es) of interest and the relevant neural mechanisms. If these steps are more routinely applied to the selection of behavioral testing paradigms used in animal disease models or psychopharmacological studies, we would conclude that much progress will have been made.

In summary, it is widely agreed that bringing together researchers with different theoretical perspectives, technical expertise and empirical knowledge to solve a problem such as cognitive enhancement in schizophrenia is a good thing. The insight of CNTRICS and like-minded initiatives is that requiring those researchers to ground their discussions and experimental designs in construct validity assures translation in the most literal sense. It assures that the all researchers will define the cognitive processes to be examined (and improved) in humans, in part as a function of the paradigms used to measure them, and examine homology (and thus translational potential) of animal paradigms targeting those processes. The ‘construct validity requirement’ requires us to move from comparing measurements at a nominal or categorical level to testing parametrically whether a human and animal model paradigm are testing the same process at both the behavioral and neural circuit level. We hope this approach will improve the efficacy of the translational research process and ultimately lead to new effective strategies for improving cognition in those suffering from schizophrenia and related disorders.

Conflict of interest

None declared.

Acknowledgements

CNTRICS was funded by National Institutes of Health Grant 1R13MH078710.

References


Holly Moore e, b, a

Department of Psychiatry, Columbia University, New York, NY, USA

Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA

Mark A. Geyer a, b

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA

Research Service, VA San Diego Healthcare System, San Diego, CA, USA

Cameron S. Carter

Center for Neuroscience and Departments of Psychiatry and Psychology, University of California at Davis, Sacramento, CA, USA

Deanna M. Barch

Departments of Psychology, Psychiatry, and Radiology, Washington University, St. Louis, MO, USA

* Corresponding author at: Department of Psychiatry, Columbia University, New York, NY, USA.

Tel.: +1 212 543 6938

E-mail addresses: hm2035@columbia.edu (H. Moore), mgeyer@ucsd.edu (M.A. Geyer), cameron.carter@ucdmc.ucdavis.edu (C.S. Carter), dbarch@wustl.edu (D.M. Barch)