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Abstract

It has long been assumed that people treat cognitive effort as costly, but also that such effort costs may vary greatly across
individuals. Individual differences in subjective effort could present a major and pervasive confound in behavioral and
neuroscience assessments, by conflating cognitive ability with cognitive motivation. Self-report cognitive effort scales have
been developed, but objective measures are lacking. In this study, we use the behavioral economic approach of revealed
preferences to quantify subjective effort. Specifically, we adapted a well-established discounting paradigm to measure the
extent to which cognitive effort causes participants to discount monetary rewards. The resulting metrics are sensitive to
both within-individual factors, including objective load and reward amount, and between-individual factors, including age
and trait cognitive engagement. We further validate cognitive effort discounting by benchmarking it against well-
established measures of delay discounting. The results highlight the promise and utility of behavioral economic tools for
assessing trait and state influences on cognitive motivation.
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Introduction

Is cognitive effort costly? There is a long tradition within

psychology of characterizing humans as ‘‘cognitive misers’’ [1],

who conserve cognitive effort, all else being equal ([2,3], also [4]

on general effort avoidance). This implies that individuals value

their effort, treating it as costly. Yet, the value of cognitive effort is

likely to be highly subjective, varying across individuals and

populations [3,5,6]. Meaningful individual and group differences

in the valuation of cognitive effort would have broad implications.

Willingness to expend effort is rarely controlled in cognitive and

neuroscience research, and therefore constitutes a pervasive

confound. Specifically, variability in behavioral and neural

measurements during task performance may reflect cognitive

motivation as well as cognitive ability. This may be particularly

relevant for understanding apparent cognitive deficits observed in

clinical populations featuring anergia or avolition [7–10], or

among older adults [11,12].

The broad implications of this question have motivated self-

report scales that provide both state markers of cognitive effort,

such as the NASA Task Load Index (NTLX) [13] and trait

measures of effortful task engagement, like the Need for Cognition

Scale (NCS) [14]. Yet, the well-known difficulties of self-report

point to the need for objective measures. Initial efforts in this

regard have examined behavioral biases to avoid cognitive effort in

free-choice tasks, yielding promising results [3,5,6]. Even greater

traction may be gained, however, by adapting behavioral

economic tools such as revealed preference and subjective value.

Revealed preference procedures, in which preferences are inferred

from choice behavior rather self-report, can be used to provide

quantitative measures of the subjective and economic value

associated with different choices. Discounting is one such

formalism, in which the value of a cost factor is measured by

the extent to which it reduces preference for a given reward.

Discounting paradigms have been productively applied in

behavioral- and neuro-economics to study diverse costs, from

delay and risk [15–18], to physical effort [19,20], and may prove

useful for measuring subjective cognitive effort as well [3,21,22].

Here we introduce a novel discounting paradigm that provides

an objective measure of the cost of cognitive effort. We investigate

the validity and utility of this measure by: 1) establishing a

parametric relationship with objective cognitive load; 2) identifying

meaningful individual differences in effort costs; 3) demonstrating

that older adults (OA) find effort more costly than younger adults

(YA); and 4) benchmarking effort discounting, in terms of

sensitivity to experimental factors and age differences, against

the well-established domain of delay discounting.

The Cognitive Effort Discounting Paradigm (COG-ED)
The key feature of this paradigm is that participants choose

whether to perform a low-effort task for a small monetary reward

or a high-effort task for a larger reward (Figure 1). Multiple choices

are made, and the amount offered for the low-effort task is titrated

until subjective equivalence is reached (the offers are equally

preferred). The additional amount required to make the high- and
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low-effort task equivalent quantifies the cost of cognitive effort, or

the degree to which increased cognitive effort diminishes the value

of task engagement. The objective load of the high-effort task can

also be varied parametrically. As such, the procedure is formally

analogous to the estimation of discounting across a range of delays

in delay discounting. Unlike discounting procedures involving

hypothetical costs or rewards, participants make choices about

tasks that they are actually paid for re-doing, promoting test

validity.

Here, we vary objective cognitive load using the N-back. The N-

back has a number of attractive properties: a) it is a well-

established probe of working memory and cognitive control [23],

b) it is phenomenally effortful [24], and c) load can be varied

parametrically by increasing N [25]. Also, time-on-task can be

fixed across load levels. Participants are given extensive N-back

practice prior to decision-making, in order stabilize performance

and familiarize participants with the subjective experience of each

load level.

Methods and Materials

Experiment 1 Participants
Twenty-five younger adult participants were recruited (YA; ages

18–30, Mean age: 21.8) from the Washington University

community, and 30 older adults were recruited from a volunteer

older adult (OA) subject pool. Participants were native English

speakers, neurologically normal with no history of mental disorder

or drug abuse, and not currently taking any psychotropic

medication. The Six-Item Cognitive Impairment test [26] was

administered to screen for dementia among OA. Five OA

participants that passed screening did not complete the protocol

or were excluded for failure to comply with instructions, leaving a

sample of 25 OA participants for study (ages 63–88, Mean age:

75.1). Participants were paid $10/hour for their participation plus

payment for levels re-done, selected at random from among all

discounting choices [27]. Procedures were approved by the

Washington University in Saint Louis IRB. All participants

provided informed, written consent.

Experiment 1 Procedure
Each session began with N-back experience, which was followed

by the effort discounting paradigm (Figure 1). Finally, participants

completed additional N-back rounds based on a random selection

from among their choices in the discounting procedure. Addi-

tionally, a number of self-report measures were administered. The

NTLX was completed after each level of N-back experience to

assess mental, physical, and temporal demand, effort, perfor-

mance, and frustration. Immediately prior to decision-making,

participants completed an additional self-report questionnaire

reflecting on their task experience. Participants also completed the

NCS, a trait index of the extent to which individuals engage with

and enjoy cognitively demanding activities.

The practice phase with the N-back included three runs for

every load level, each comprised of 64 items (consonants, 24-point

Courier New font, 16 targets, in colors uniquely identifying levels,

N). Participants had 1.5 s to respond to each item by button press,

after which items were replaced by fixation cross. The inter-item

interval was 3.5 s. Lures (items within N +2, but not exactly N,

positions after last presentation) were included in N-back stimulus

lists to increase level difficulty: eight for N = 1, six for 2, five for 3,

and three for N = 4, 5, and 6. Participants were given feedback

about run-wise ‘‘% of targets’’ and ‘‘% of non-targets correct’’. To

motivate engagement, and to prevent participants from respond-

ing, e.g., ‘‘Non-target’’ at the expense of the ‘‘Target’’ score,

participants were also given feedback of ‘‘Good job!’’ if both scores

were above 50% or ‘‘Please try harder!’’ otherwise.

In the discounting procedure, participants made choices

between repeating a higher level for more money or a lower level

for less money. Analogous to adjusting-immediate-amount (AIA)

procedures [28], choices were always between a smaller, variable

Figure 1. Cognitive effort discounting (COG-ED) paradigm. Task structure including N-back practice, effort discounting, and N-back re-do.
doi:10.1371/journal.pone.0068210.g001
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reward (starting at $1.00) for the easiest level (N = 1) and a larger,

fixed reward ($2.00) for each of the harder levels (N.1). Levels

were referred to by identifying color, to avoid anchoring effects

[29]. If, on a given trial, the larger offer was selected, the offer for

the easiest level was increased, and if the smaller offer was selected,

it was decreased. Each time a choice was made, adjustments were

half as much as on the prior adjustment. Participants made six

choices so that adjustments following their final choice for each

level were $0.015, and the resulting amount was taken as the

participant’s point of indifference. YA made 5 levels (N = 2–6) * 6

offers = 30 choices and OA made 3 levels (N = 2–4) * 6 offers = 18

choices. Offer order was randomized and non-nested [28].

Participants were instructed that one of their choices would be

randomly selected for them to repeat up to 10 more times,

receiving payment for each repetition. They were further

instructed that payment was contingent on ‘‘maintaining their

effort’’, but not on performance, and that ‘‘behavioral clues’’

would be used to monitor effort. All participants completed their

randomly selected choice exactly four more times and were paid

the associated amount for each repetition. Aside from the pencil-

and-paper self-report measures, the entire protocol was pro-

grammed and administered in E-prime 2.0 (Psychology Software

Tools, Inc., Sharpsburg, PA).

A second experiment was conducted to benchmark COG-ED

against delay discounting, a well-established domain that also has

been shown to index meaningful individual and age-group

differences [30,31]. In Experiment 2, a new sample of participants

was recruited to perform both delay and effort discounting tasks in

the same experimental session.

Experiment 2 Participants
An additional 17 YA (ages 18–24, Mean age: 20.5) and 16 OA

(ages 67–89, Mean age: 78.0) were recruited from Washington

University and the OA subject pool, respectively. Years of

education were reliably higher for OA than YA (OA range 12–

18, Mean years: 16.4; YA range 13–18, Mean years: 14.9;

Wilcoxon rank sum, P,0.01).

Experiment 2 Procedure
Participants completed both delay discounting and COG-ED

paradigms within a single session. We used the same procedure as

in Experiment 1, except for the following changes. First, both age

groups completed three runs of practice with N-back levels = 1–4.

Second, participants were offered two base amounts ($1 and $5) for

the highest level, rather than just one ($2). Participants thus made

3 levels (n = 2–4) * 6 offers * 2 amounts = 36 effort discounting

choices. In delay discounting, participants made choices regarding

hypothetical rewards and six delays: one week, six months, and 1,

3, 5, and 10 years. Two rewards were used, $1,000 and $25,000, to

examine amount effects. Participants thus made 6 delays * 6 offers

* 2 amounts = 72 delay discounting choices. As before, offer order

was randomized and non-nested. To gain greater insight into the

factors that influenced decision-making in COG-ED, we also

asked participants to rate the degree (Likert scale, 1–10) to which

their decisions were based on offer amounts, effort, desire to do

well, desire to challenge themselves, etc. Finally, we collected

income (family household for students, average of highest three

pre-retirement years, for retirees), indicated by one of 9 ranked

bins (,$20K, $20–40K,…, $120–150K, or .$150K), to test for

effects on marginal utility of our offers.

Results

Experiment 1
Parametric effects of N-back load on performance and

self-report indicators of effort. We first tested for load effects

on performance (Table 1). Consistent with prior work (e.g., [25]),

linear contrast ANOVAs revealed effects of Level (N) on

Performance (signal detection d’) for YA (N = 2–6, F1,122 = 92,

P,0.01, g2 = .43) and OA (N = 2–4, F1,72 = 29, P,0.01, g2 = .29),

validating the load manipulation. There was also a linear effect of

increasing Objective Load associated with slower response times

among YA (F1,122 = 5.10, P = 0.03, g2 = 0.04), but not OA

(F1,72 = 0.55, P = 0.46).

Self-reported task perceptions also support the presence of load-

related increases in subjective effort (Table 2). Linear contrasts of

NASA Task Load Index (NTLX) scores by N-back load level

(N = 1–4), indicated that participants perceived greater mental and

physical demands, increasing rush, increasing failure, greater

demands for effort, and increasing frustration with increasing N (all

P’s,0.01).

Parametric effects of task load on effort

discounting. The key analysis was to determine whether

participants showed reduced subjective value of offers requiring

greater effort. Results clearly show greater discounting of more

demanding N-back levels (Figure 2). Reliable linear contrasts

obtained for both YA (N = 2–6, F1,122 = 103, P,0.01, g2 = 0.46)

and OA (N = 2–4, F1,72 = 14, P,0.01, g2 = 0.17), indicate that

effort costs increased with objective load. For example, the mean,

relative subjective value (SV) of a $2.00 offer for redoing N = 4,

was .49 * $2.00 = $0.98 for YA and .20 * $2.00 = $0.40 for OA.

Thus, YA required an additional $1.02 of payment to perform the

4-back instead of the 1-back, whereas OA required an additional

$1.60 (conversely, YA would forego $1.02 to avoid the 4-back and

perform the 1-back instead, while OA would forego an additional

$1.60).

An important question is whether decreasing SV with increasing

load can be fully explained by declining performance. We

examined this issue in multilevel models controlling for load-

related performance (d’ and mean response time, mRT) using

subject-specific intercepts and separate models for YA and OA.

Multilevel models are useful because they allow for pooling of

information across participants to more accurately estimate

within-subject effects of load and performance across relatively

few observations (four for each participant: N = 1–4) while

accounting for between-subject variability. In our model, be-

tween-subject variability is modeled with subject-specific intercepts

B0j[i]. Following [32], subscripts refer to participant j, the (within-

participant) load-level i, and j[i] indicates the nesting of

participant-level i within participant j. Load level, N, is further

subscripted to indicate that loads were recoded from N = 21.5 to

N = 1.5, centering at N = 2.5. Subject-specific intercepts are given a

normal distribution with mean and variance terms in the second

level of the model. Multilevel models were fit using the nlme

package, version 3.1-109, in R (http://www.r-project.org/);

parameters were estimated by maximizing restricted log-likelihood

[33].

SVi~B0j½i�zB1d 0izB2mRTizB3N2:5,izei

B0j*N mB0
,s2

B0

� � ð1Þ

In both age groups, load was a reliable predictor of SV, even

controlling for performance (Table 3). Thus, though errors and
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time-on-task increased with task load, parametric load effects on

discounting were independent of these task performance changes.

We note that we used SV at N = 1 (SV1) for estimating our

multilevel models despite the fact that SV1 was given an assumed

theoretical value (SV1 = 1), rather than experimentally deter-

mined. We included this theoretical data point since the intent of

the multilevel modeling was to evaluate the effects of performance

and load on the decline in SV relative to this reference value (SV1).

However, to ensure that our conclusions were not unduly biased

by inclusion of this theoretical data point, we also estimated

multilevel models of SV data restricted to N = 2–4 (centered at

N = 3). To retain information about the drop in performance

measures (mRT and d’) relative to their values at N = 1, we used

the ratio of performance values at each level to their values at

N = 1 as predictors. Removing SV1 made no difference in the key

results, as the main effect of load on SV was still present for both

YA (B = 20.17, SE = 0.03, P,0.01) and OA (B = 20.16,

SE = 0.04, P,0.01), even when controlling for the effect of

increasing load on performance (ratio mRT and ratio d’).

Trait individual differences in effort discounting. We

next examined individual differences in cognitive effort discount-

ing. For this, we calculated a single area under the curve

(AUCeff.disc.) value for each individual. Area under the curve has

been previously used in delay discounting as a desirably

atheoretical form of parameter estimation [34]. Trapezoids are

bounded by segments connecting SV estimates, thus quantifying

effort costliness across N-back levels. Levels N = 2–4 were used for

both YA and OA, so that all AUCeff.disc. values were calculated on

the same basis. In the sample, AUCeff.disc. ranged from 0.015

(easier level always selected during discounting) to 1.0 (harder

levels always selected). Thus, both YA and OA varied widely in

cognitive effort discounting, ranging from maximum to minimum

AUCeff.disc. (Figure 3).

We next tested whether discounting is trait-like, predicting

willingness to expend cognitive effort in domains other than N-

back tasks. For this we used the Need for Cognition Scale (NCS), a

well-established trait measure of daily engagement with and

enjoyment of cognitively demanding activities [14]. A significant

positive correlation was observed (Figure 3) between AUCeff.disc.

and NCS (B = 11.07, SE = 4.71, P = 0.02, R2 = 0.10), supporting

the idea that greater willingness-to-pay to avoid N-back effort

predicts reduced trait engagement with cognitively demanding

activities.

Effort discounting detects trait NCS differences better

than NTLX self-report. We compared our effort discounting

measure to a well-established self-report instrument measuring

Table 1. N-back response times (correct trials), d’ (all trials) for YA and OA.

Young Adults (n = 25) Old Adults (n = 25)

RT (msec) d’ RT (msec) d’

Load Level (N) M SD M SD M SD M SD

1 592 101 3.42 0.97 785 110 3.13 0.81

2 714 136 2.84 0.72 886 128 2.11 0.53

3 734 146 2.26 0.73 884 124 1.74 0.40

4 713 126 1.65 0.64 859 130 1.39 0.48

5 687 119 1.53 0.77 - - - -

6 640 151 1.08 0.63 - - - -

doi:10.1371/journal.pone.0068210.t001

Table 2. Self-report NASA Task Load Index Scores (scale: 0–21) by level, N.

Young Adults (N = 25)

Mental Demand Physical Demand Temporal Demand Failure Effort Frustration

N M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

1 6.3 (3.8) 2.6 (1.5) 8.3 (5.2) 6.3 (4.1) 6.7 (3.4) 5.9 (4.9)

2 11.9 (3.5) 3.7 (3.0) 9.6 (4.5) 7.4 (3.5) 11.1 (3.7) 7.9 (4.9)

3 15.2 (3.3) 5.0 (4.1) 11.7 (4.4) 10.3 (4.0) 14.3 (3.1) 10.3 (5.2)

4 16.4 (3.3) 5.3 (5.0) 13.1 (4.5) 13.0 (3.9) 15.5 (3.2) 11.7 (5.4)

5 17.0 (2.8) 5.8 (5.7) 13.4 (5.6) 13.4 (4.2) 15.7 (3.8) 11.9 (5.1)

6 18.4 (2.0) 6.3 (6.3) 13.4 (6.0) 15.2 (4.4) 15.6 (4.9) 10.8 (6.2)

Older Adults (N = 25)

1 9.6 (5.4) 4.1 (3.5) 8.2 (5.4) 7.6 (4.4) 9.0 (5.7) 5.3 (4.5)

2 13.0 (5.4) 6.4 (5.2) 11.5 (5.0) 10.6 (4.2) 13.3 (5.5) 8.3 (5.0)

3 14.2 (5.6) 7.6 (5.2) 12.4 (5.2) 12.0 (4.5) 14.3 (5.6) 10.0 (5.9)

4 15.7 (5.4) 8.5 (6.0) 13.3 (5.5) 12.5 (5.1) 14.8 (5.2) 11.0 (6.3)

doi:10.1371/journal.pone.0068210.t002
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subjective effort: the NTLX. As with SV, an area under the curve

was calculated for each NTLX scale and averaged to create a

single NTLX composite score for each individual. This composite

and AUCeff.disc were entered into a multiple regression to predict

NCS. AUCeff.disc. remained as a reliable predictor of NCS

(P = 0.03), while the composite NTLX score did not (P = 0.16).

This supports the idea that the objective, behavioral economic

preference measured by effort discounting is a better predictor of

individual differences in Need for Cognition than are self-report

measures of subjective effort.

Age differences in effort discounting. Our results strongly

suggest that cognitive effort is more subjectively costly for OA than

for YA. For each level of the task (N = 2–4; Figure 2), average SV

was lower for OA than YA (all t-test P’s,0.01). Also, AUCeff.disc.

was reliably larger for YA (MeanYA = 0.72) than OA

(MeanOA = 0.36; Wilcoxon rank sum P,0.01).

A possible confound is that the observed age differences were

primarily driven by age differences in load-related task perfor-

mance. To address this, another multilevel model (using subject-

specific intercepts) was fit to test effects of age, load, and their

interaction while controlling for performance. Age (subscript j) was

dummy coded 1 for OA and 0 for YA. As before, subject-specific

intercepts are given a normal distribution with mean and variance

terms in the second level of the model. Age group-specific variance

terms (subscript k) were used since heterogeneous variance yielded

a better model fit according to superior AIC/BIC and significant

likelihood ratio (4.62; p = .03).

SVi~B0j½i�zB1d 0izB2mRTizB3N2:5,izB4Agej

zB5N2:5,i|Agejzei

B0j*N mB0
,sB0,k

� � ð2Þ

As before, SV decreased with increasing load, and independently

with poorer N-back performance. Critically, however, after

controlling for performance and load, model parameters indicate

that: 1) SV is lower for OA than YA, and 2) SV declines with

increasing load more rapidly for OA than YA (Table 4).

As before, we also fit a model for Equation 2 excluding SV at

N = 1 (SV1). Again, even without SV1 in the dataset, we still

observed a main effects of load (B = 20.17, SE = 0.03, P,0.01)

and the critical effect of age (B = 20.31, SE = 0.07, P,0.01), when

controlling for potential age-related performance effects. However,

the interaction of age and load, was not significant when SV1 was

excluded (P = 0.90). This latter finding indicates that the interac-

tion reflects age differences in the effect of load specifically from

N = 1 to N.1.

A common approach used to control for between-group

differences in subjective effort during task performance is to

compare groups in conditions that are matched on performance

[35]. Our results clearly show that this method is insufficient. For

example, OA performance on N = 3 (Meand’, OA = 1.74) is

statistically indistinguishable (t-test P = 0.53) from YA performance

on N = 4 (Meand’,YA = 1.65), and yet their SV is reliably lower

(Wilcoxon P = 0.02). Thus, even when matched on performance,

OA find cognitive effort subjectively more costly.

Effort discounting detects age differences better than

NTLX self-report. A comparison of NTLX and COG-ED

revealed that our novel paradigm has greater sensitivity to

distinguish group-wise subjective experience of cognitive effort.

Specifically, the composite NTLX score described above was

entered into a logistic regression, along with AUCeff.disc., to predict

age. AUCeff.disc. was a reliable predictor of age (x2 P,0.01), while

NTLX was not (x2 P,0.35), indicating that there is more

information about age in effort discounting than NTLX scales.

Effort discounting is not merely redundant with Need for

Cognition. It is possible that age differences in subjective effort

merely reflect age-related variance in NCS since mean NCS scores

Figure 2. Subjective value of rewards for task engagement
across multiple levels of the N-back for OA and YA. Subjective
value decreases linearly with load (N). OA discount more than YA at all
levels (N = 2–4). SE are shown. nYA = 25 participants * 6 levels = 150 and
nOA = 25 participant * 4 levels = 100. Data also included for illustrative
purposes in [51].
doi:10.1371/journal.pone.0068210.g002

Table 3. Multilevel models of subjective value, as predicted
by performance (d’), mean response time (mRT, seconds), and
N-back level.

Term B SE df t p

Young Adults (n = 4 levels * 25 participants = 100)

d’ 0.05 0.03 72 1.70 0.09

mRT 20.05 0.19 72 20.24 0.81

N2.5 20.13 0.02 72 24.98 ,0.01

Older Adults (n = 4 levels * 25 participants = 100)

d’ 0.08 0.05 72 1.49 0.14

mRT 20.56 0.26 72 22.16 0.03

N2.5 20.21 0.03 72 25.95 ,0.01

doi:10.1371/journal.pone.0068210.t003

Table 4. Multilevel model of subjective value, as predicted by
performance (d’), mean response time (mRT, seconds), and N-
back level.

Term B SE df t p

(n = 4 levels * 50 participants = 200)

d’ 0.07 0.03 146 2.44 0.02

mRT 20.26 0.16 146 21.68 0.10

N2.5 20.11 0.02 146 24.88 ,0.01

Age 20.18 0.06 48 23.06 ,0.01

Age6N2.5 20.11 0.03 146 23.80 ,0.01

doi:10.1371/journal.pone.0068210.t004
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are numerically (though not reliably P = 0.35) lower for OA

(MeanOA = 61.60, MeanYA = 64.52). Thus, there is some concern

that COG-ED is redundant with Need for Cognition. However,

after controlling for NCS scores in a hierarchical regression, age

still explained a significant (P,0.01) and large (DR2 = 0.27)

increment in variance in AUCeff.disc..

Experiment 2 Results
Replicating a key finding of Experiment 1, there was strong

evidence of a linear decline in SV with load. Again, in Experiment

2, reliable linear contrasts obtained for YA, for both the $1 offers

(N = 2–4, F1,49 = 13, P,0.01, g2 = 0.21) and $5 offers (F1,49 = 15,

P,0.01, g2 = 0.24), and also for OA, for both the $1 offers (N = 2–

4, F1,46 = 13, P,0.01, g2 = 0.22) and $5 offers (N = 2–4, F1,46 = 16,

P,0.01, g2 = 0.26), indicating that effort costs increased with

objective load.

Canonical delay discounting behavior includes an amount

effect: larger offers are discounted less than smaller offers [36].

Consistent with extant literature, both YAs and OAs discounted

hypothetical, delayed offers of $25,000 less than offers of $1,000

(Wilcoxon tests of delay-discounting AUC: PYA = 0.01, POA,0.01).

Strikingly, a similar amount effect was also found for cognitive

effort discounting: OA AUCeff.disc. was reliably (P = 0.01) higher

for a $5 offer (Mean$5 = 0.51) than a $1 offer (Mean$1 = 0.43),

while YA AUCeff.disc. was numerically higher (Mean$5 = 0.80,

Mean$1 = 0.77), though not reliably (P = 0.24), likely due to ceiling

effects. Also, average subjective value was numerically higher at

every load level, for both groups, when the base offer was larger.

Thus, for both cognitive effort and delays, participants discounted

larger offers to a lesser extent. Our analysis is based on

proportional comparisons between amounts (i.e., discounted

amount/max amount) not because we assume any particular

effort discounting function (indeed there is far too little data to

infer a function at this time), but because discounting was clearly

not subtractive. The mean discounted value of a $5 offer for N = 3,

for example, was $3.07 ($1.93 decrement) while the mean

discounted value of a $1 offer was $0.60 ($0.40 decrement).

Delay discounting has been conceptualized as indexing a trait

measure of the capacity for self-control and goal-directed behavior

[37]. Relatedly, it has been proposed that reduced self-control may

relate in part to a bias against cognitive effort (specifically cognitive

control demands) [38]. Thus we predicted that those who show

greater effort discounting would also show greater delay discount-

ing. Indeed, a positive correlation (Figure 4) was observed between

these two discounting domains, supporting the prediction

(B = 0.30, SE = 0.13, P = 0.03, R2 = 0.14).

Differences in the marginal utility of money do not

explain differences in effort discounting. Delay discounting

is sensitive to individual differences in the marginal utility of

money. In fact, prior reports that OA show lesser delay

discounting [31] were countered by evidence that the effect was

primarily due to age-related income differences [39]. Hence, we

tested whether age differences in effort discounting are merely the

consequence of OA exhibiting lower marginal utility for the offers.

In fact, multiple lines of evidence indicate that the observed age

effects were not merely an artifact of marginal utility. First,

amount effects among OA show clearly that they cared about the

utility of our offers. Second, participants rated the extent to which

their ‘‘choices [were] based on the offer amount ($) of each task.’’

Consistent with the marginal utility account, OA’s average ratings

(MeanOA = 5.8) were reliably (P = 0.01) lower than YA’s

(MeanYA = 7.7). However, age (B = 20.17; SE = 0.08; P = 0.03),

but not ratings (B = 0.01; SE = 0.02; P = 0.62), was reliable in a

multiple regression of AUCeff.disc (age dummy coded 1 for OA, 0

for YA). Finally, income explained age differences in delay but not

effort discounting. Replicating prior reports, a multiple regression

of delay discounting AUC showed a main effect of income

(B = 0.05, SE = 0.02, P,0.01), but not age (B = 20.08, SE = 0.08,

P = 0.32). Conversely, a multiple regression of effort discounting

AUC showed a main effect of age (B = 20.30, SE = 0.09, P,0.01)

but not income (B = 0.02, SE = 0.02, P = 0.43). Formally, in a

model predicting AUC with age, domain (dummy coded 1 for

effort, 0 for delay), and their interaction, the age6domain

interaction was statistically significant (B = 20.22, SE = 0.11,

P = 0.05) when income was included as a covariate, but not when

income was excluded from the regression model (B = 0.13,

SE = 0.15, P = 0.39). This dissociation suggests that while marginal

utility might account for age effects in delay discounting, it does

not in COG-ED.

Increased Conscientiousness among OA does not explain

age differences in effort discounting. Finally, it is possible

that OA discount more because they tend to be more conscien-

Figure 4. Area under the cognitive effort discounting curve
predicts delay discounting. Area under the curves: for effort,
averaged across $1 and $5 offers, levels N = 2–4; for delay, averaged
across $1,000 and $25,000 offers, delays from one week to ten years.
n = 33 participants.
doi:10.1371/journal.pone.0068210.g004

Figure 3. Area under the cognitive effort discounting curve
predicts Need for Cognition. Need for Cognition as predicted by
Area Under the Curve of subjective value for levels N = 2–4 of the N-
back. n = 50 participants.
doi:10.1371/journal.pone.0068210.g003
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tious [40] and thus find it more aversive to experience poor task

performance. To test whether this hypothesis could explain our

age effects, we examined participants’ ratings on a scale of 1 (not at

all) to 10 (a lot), the extent to which their decisions were ‘‘based on

whether or not [they] would be able to get a high score.’’ OA gave

numerically, (if not reliably P = 0.08) higher ratings (MeanOA = 6.6)

than YA (MeanYA = 4.9). However, even after controlling for

ratings (B = 20.03; SE = 0.01; P = 0.02) in a hierarchical regres-

sion, age still serves as a trend-level predictor of AUCeff.disc.

(B = 20.13; SE = 0.07; P = 0.059). Note that in the follow-up,

participants discounted both $1 and $5, so the dependent variable

was each participant’s average AUCeff.disc. across the two amounts.

Discussion

In this study, we used a novel discounting paradigm (COG-ED)

to measure the subjective value of cognitive effort. Our results

indicate that people are cognitive misers: they are willing to forgo

substantial reward to conserve cognitive effort. Our work

converges with the recent studies of Botvinick and colleagues

[3,5,21], who have shown that individuals are biased to avoid

cognitive demand. Importantly, their studies provided one of the

first direct links (controlling for task duration and error rate)

between task avoidance and demands for cognitive control: they

observed that participants reliably avoided conditions involving

frequent task switching. Our results replicate and extend this

finding in a number of ways. Specifically, we demonstrated that

effort costs increase parametrically with increasing load in the N-

back, a benchmark cognitive control task. Other comparative

advantages of the COG-ED paradigm include methodological

control of time-on-task and a continuous measure of the subjective

effort costs, rather than binary task avoidance.

Botvinick and colleagues have also been interested in examining

the economic value of cognitively effortful tasks, conducting a

preliminary investigation of this question through post-task self-

report. Specifically, [21] asked participants to informally assign a

‘‘fair pay’’ dollar value for completion of task-switching tasks. Note

that the values participants assigned (means of $1.89 for more

frequent or $0.89 for less frequent task-switching options) for their

performance coincided with the range of offer values in our

discounting paradigm. While the coincidence of valuations is

interesting, asking participants to freely assign values does not

confer the principled benefits of revealed preference obtained by a

formal discounting procedure. Participant reports that their effort

is worth $1.89 are not the same as showing that they are willing to

trade their effort for that amount.

Our study also demonstrates the utility of framing the decision

to engage in cognitively demanding activities as an economic

choice. Subjective value provides an escape from a traditionally

circular logic about effort whereby decrements in performance or

increased physiological response at increased demands indicate

greater effort because they occur at increased demands. Instead,

subjective value productively reframes the outcome in precisely

those terms of greatest interest to researchers: the extent to which

effort costs diminish the rewards of cognitive task engagement.

Furthermore, our operationalization places cognitive effort into a

well-established discounting framework, illustrating its continuity

with a diverse array of subjective cost factors.

We showed that these conceptual advantages translate into

several methodological advantages. First, the economic indicator

(subjective value) corresponded well with traditional objective

(response times and error rates) and subjective indicators (self-

report measures) of cognitive effort. Second, it was sensitive to

multiple between- and within-subject factors that should impact

willingness to expend effort. Within-subject factors include

performance and load, and also reward amount. Between subjects,

lesser effort discounting predicted greater self-reported engage-

ment with cognitively demanding activities using the NCS. This

correlation supports: 1) a trait-like property of effort costliness

(some individuals have a higher price point for cognitive effort

than others) and 2) that our measure captures that trait.

Furthermore, we found an intriguing relationship whereby lesser

effort discounting was associated with shallower delay discounting

– suggesting that self-control may depend on how costly one finds

cognitive effort. Our measures also provide direct support for the

claim that cognitive effort is more costly for OA. Importantly,

these age differences remain even when controlling for potential

confounds like poorer performance, or the reduced marginal

utility of money among OA (unlike delay discounting, age

differences are not due to differences in income).

Why might OA find cognitive effort more costly? Age-related

deficits in dopaminergic function during reward anticipation

[41,42] may play a role. Influential computational models [43]

and human and animal work [20,44,45] postulate that the

invigoration of motor behavior is regulated by the perceived

average rate of reward and corresponding dopamine release. If

these principles extend to cognitive behavior, OA will be generally

less willing to expend cognitive effort as a result of reduced

dopaminergic function. Diminished executive function among OA

[46–48] may also play a role, given the accumulating evidence for

a link between cognitive control demands and subjective cognitive

effort. In the face of declining capacity, OA may compensate by

recruiting a greater fraction of their neural/cognitive control

resources [35,48]; this greater recruitment could underlie the

increase in subjective effort. Greater subjective effort may also

relate to greater autonomic arousal for OA, when engaged with

cognitively demanding tasks [11]. Such autonomic effects could be

experienced as particularly aversive for OA [49].

It is impossible to rule out that OA show greater discounting

because they value money less than YA. Our approach of

manipulating and/or controlling for likely covariates (e.g., reward

amount, income, subjective ratings of reward utility) may provide

greater confidence that inter-group discounting comparisons are

meaningful. However, it is important to note that diminished

motivation is deeply confounded with diminished reward sensitiv-

ity. Thus, special care should be taken when comparing groups

with differential reward sensitivity to make appropriate inferences

about subjective effort.

Another limitation is that the elicitation procedure used here

never allowed participants to choose to do a harder task for less

money. It is possible that some participants may, for example,

prefer N = 2 to N = 1 because they find N = 1 relatively boring and

would thus prefer to perform N = 2 even when offered less money

than N = 1, if given the option. One solution is to offer equal

amounts for high and low load options at the outset, and use

participants’ first choice to determine which offer is adjusted on

the next decision. In this way, indifference points could be

estimated, even when they involve lower offers for higher loads.

Our results demonstrate the enormous potential of the

discounting framework to investigate both what makes cognitive

effort subjectively costly, and also its impact on decision-making

and behavior. Future directions could include using effort

discounting to explore the extent to which motivation explains

apparent cognitive deficits in older adults, or among those with

disorders of anergia and avolition, including depression (taking

into account concerns about reward sensitivity, as noted above).

Effort discounting may also help with interpreting physiological

measures thought to relate to cognitive effort. For example, effort
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discounting could be used to test motivational accounts of age-

related discrepancies in neural recruitment and performance in

demanding tasks. Moreover, the discounting approach has been

productively applied to elucidate the neural mechanisms of delay,

risk [16,17,20], and physical effort-based decision making [19].

Thus, such methods will likely prove equally valuable for testing

formal and neuroeconomic models of cognitive effort [21,50].
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