Fractional anisotropy in individuals with schizophrenia and their non-psychotic siblings

Michael P. Harms a,*, Kazi D. Akhterb, John G. Csernansky c, Susumu Morib, Deanna M. Barch a,d

a Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
b Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
c Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
d Department of Psychology, Washington University, St. Louis, MO, USA

ARTICLE INFO

Article history:
Received 21 February 2014
Received in revised form
18 August 2014
Accepted 9 October 2014
Available online 31 October 2014

Keywords:
Schizophrenia
Endophenotype
Diffusion tensor imaging (DTI)

ABSTRACT

Fractional anisotropy (FA) was examined in a priori selected fiber tracts in individuals with schizophrenia (n=25) and their non-psychotic siblings (n=29) versus controls (n=35). FA was reduced in a portion of the fornix in individuals with schizophrenia (although this did not survive correction for the number of tracts investigated). FA in the siblings did not differ from that in controls in any of the investigated tracts.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Considerable interest exists in identifying heritable, quantitative biological markers that are associated with neurobiologically relevant dimensions of complex psychiatric disorders. Specific intermediate phenotypes (“endophenotypes”) may be associated with a smaller number of genes than the overall psychiatric syndrome, translate better to animal models, and provide easily measured endpoints for studying the biological effects of treatments targeting specific molecular pathways (Gottesman and Gould, 2003; Braff et al., 2007). Further, validated endophenotypes are natural candidates for study as dimensions or constructs that may transcend individual psychiatric disorders in the effort to develop a new psychiatric nosology oriented around causative mechanisms instead of descriptive syndromes (Heckers, 2008; Craddock and Insel, 2013).

Consistent with the frequent characterization of schizophrenia as a disorder of abnormal brain connectivity (Friston and Frith, 1995; Andreasen et al., 1999; Fornito et al., 2012), one such class of biological markers that has received considerable study in individuals with schizophrenia is white matter integrity assessed using diffusion tensor imaging (DTI). The most common DTI measure, fractional anisotropy (FA), is heritable (h2 ~ 0.5 over the whole brain) (Kochunov et al., 2010; Skudlarski et al., 2013; Bohilken et al., 2014), thus satisfying that important characteristic of an endophenotype (Gottesman and Gould, 2003). A number of studies have reported decreased FA in various white matter tracts in individuals with schizophrenia, albeit with a mixture of both positive and negative findings across studies (for reviews, see Kanaan et al., 2005; Kubicki et al., 2007; Fitzsimmons et al., 2013). However, a much smaller number of studies have investigated FA in the siblings of family members with schizophrenia (Hoptman et al., 2008; Munoz Maniega et al., 2008; Camchong et al., 2009; Hao et al., 2009; Clark et al., 2011; Knochel et al., 2012a; Knochel et al., 2012b; Boos et al., 2013; Kubicki et al., 2013; Skudlarski et al., 2013). If FA is a candidate endophenotype related to a heritable genetic variation in schizophrenia, the non-psychotic siblings of individuals with schizophrenia should exhibit an intermediate degree of FA abnormality compared with their affected siblings. We present our findings regarding the integrity of a number of a priori selected white matter tracts in the siblings of individuals with schizophrenia. We hypothesized that individuals with schizophrenia (relative to controls) would exhibit decreased FA in at least several tracts and that their siblings would have an intermediate degree of FA reduction in those same tracts.

2. Methods

2.1. Subjects

The subjects were individuals who volunteered for studies of brain structure and function at Washington University School of Medicine in St. Louis, MO. Subjects...
Values are mean (S.D.) unless stated otherwise.

1 Mean duration of illness for SCZ was 5.2 years (S.D. = 3.1).

2 p-value for overall group effect using ANOVA for continuous variables and Fisher's exact test for categorical variables. Age and gender were included as covariates in the statistical analysis of FA.

3 Scaled score on the vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS-III). In post-hoc testing, SCZ < CON-SIB (p = 0.03) and SCZ < CON (p = 0.002).

4 Lifetime histories were assessed using DSM-IV criteria. For these histories, n = 14 and 17 for CON-SIB and CON, respectively, due to missing data.

5 Z-scores, computed from a battery of neuropsychological tests for the cognitive domain scores, and from the SANS/SAPS (Andreasen et al., 1995), SIPS (Miller et al., 1999), and Chapman Psychosis Proneness Scales (Chapman et al., 1995) for the clinical symptom scores. See Harms et al. (2007) for details. Posthoc testing indicated that SCZ symptom scores differed from SCZ-SIB, CON-SIB, and CON for all 6 scores (all p < 0.053), and between SCZ-SIB and both CON-SIB and CON for negative symptoms (p = 0.08 and 0.06, respectively). CON-SIB and CON did not differ for any of the 6 scores (all p > 0.3).

6 Comprised young individuals with DSM-IV schizophrenia (SCZ), their non-psychotic siblings (SCZ-SIB), healthy controls (CON), and their siblings (CON-SIB). There were 14 SCZ/SCZ-SIB pairs (28 subjects) and 12 CON/CON-SIB pairs (24 subjects) (and thus 37 singletons). Siblings were full siblings, based on self-report. The DTI data from this cohort have not been reported previously. The SCZ subjects were treated with antipsychotic medications (primarily atypical agents), and had been clinically stable for at least 2 weeks before study. SCZ-SIB, CON and CON-SIB subjects all had a lifetime history of any DSM-IV psychotic disorder, and the CON and CON-SIB had no first degree relatives with a psychotic disorder. Further details of exclusion criteria are available elsewhere (Harms et al., 2007; Mamah et al., 2008). See Table 1 for demographics and additional subject characteristics. All subjects gave written informed consent.

2.3. Processing

DTI data were processed in a manner similar to the procedures of Faria et al. (2010) using the DTIStudio, ROITool, and DiffMap software packages. Raw diffusion-weighted images were co-registered and corrected for eddy currents and subject motion using a 12-parameter affine transform of the Automatic Image Registration (AIR) package. The diffusion tensor was calculated using multivariate linear fitting. The skull was stripped using the b=0 images (intensity thresholding followed by manual correction where necessary). For spatial normalization, b=0 images were first aligned to the ICBM-DTI-81 template using a 12-parameter affine transformation of AIR. After this initial alignment, more precise spatial normalization was performed using non-linear registration to a single subject atlas (JHU-DTI-MNI “Eve”), which has been extensively labeled (Mori et al., 2008; Oishi et al., 2009). This non-linear registration was performed using dual-contrast Large Deformation Diffeomorphic Metric Mapping, in which both b=0 and FA images were used to drive the registration (Ceritoglu et al., 2009). By applying the reverse transformation the labels (ROIs) in the “Eve” atlas were propagated back to each subject’s native diffusion space, where FA was quantified for selected regions of interest (ROIs) (Table 2). Given the heterogeneity regarding which specific white matter tracts demonstrate FA changes in schizophrenia, we used an inclusive approach to ROI selection, including a tract if it had been implicated in several previous studies (for reviews, see Kanaan et al., 2005; Kubioki et al., 2007; Kyriakopoulos et al., 2008; White et al., 2008; Kyriakopoulos and Frangou, 2009; Peters et al., 2010; Meloni et al., 2011; Fitzsimmons et al., 2013) for meta-analyses, see Ellison-Wright and Bullmore, 2009; Bora et al., 2011; Patel et al., 2011).
demographics, education, IQ, lifetime histories of Axis I psychopathology, or cognitive and clinical domain scores (Table 1). Therefore, to increase power and simplify data presentation, the model betas for those groups were averaged into a single “Control” group for comparison with SCZ and SCZ-SIB. Group differences with a p-value < 0.05 (uncorrected for multiple ROIs) are noted. (The Bonferroni corrected p-value threshold, controlling for the 10 ROIs would be 0.005, which was not satisfied for any comparison.) Correlations of clinical and cognitive measures with FA were not conducted given the generally negative nature of the overall findings regarding group differences in FA.

3. Results

The only tract that exhibited an effect of group on FA in an omnibus F-test comparing SCZ, SCZ-SIB and controls was FXcrus (F(2,25)=4.11, p=0.029; Table 2), which was the crus/stria terminals portion of the fornix. Pairwise comparisons between groups of this tract revealed a statistically significant decrease of FA of 4–5% in SCZ compared with SCZ-SIB (p=0.030, Cohen’s d effect size = 0.46) and controls (p=0.016, effect size = 0.52), but no difference emerged between SCZ-SIB and controls (p=0.54).

4. Discussion

We found that FA in siblings of individuals with schizophrenia did not differ from FA in controls in any of the investigated white matter tracts. While most of the tracts investigated have been reported in at least one other study as differing in the family members of individuals with schizophrenia (vs. controls), the reported in at least one other study as differing in the family matter tracts. While most of the tracts investigated have been differences between SCZ, SCZ-SIB, and Controls.

Table 2

<table>
<thead>
<tr>
<th>Tract</th>
<th>SCZ</th>
<th>SCZ-SIB</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior limb of the internal capsule (ALIC)</td>
<td>0.459</td>
<td>0.466</td>
<td>0.470</td>
</tr>
<tr>
<td>Cingulate portion of the cingulum (CCG)</td>
<td>0.368</td>
<td>0.360</td>
<td>0.358</td>
</tr>
<tr>
<td>Hippocampal portion of the cingulum (CHG)</td>
<td>0.361</td>
<td>0.352</td>
<td>0.356</td>
</tr>
<tr>
<td>Column and body portion of the fornix (FX)</td>
<td>0.315</td>
<td>0.343</td>
<td>0.344</td>
</tr>
<tr>
<td>Crus/stria terminals portion of the fornix (FXcrus4)</td>
<td>0.398</td>
<td>0.413</td>
<td>0.418</td>
</tr>
<tr>
<td>Inferior frontal-occipital fasciculus (IFO)</td>
<td>0.407</td>
<td>0.401</td>
<td>0.403</td>
</tr>
<tr>
<td>Superior longitudinal fasciculus (SLF)</td>
<td>0.409</td>
<td>0.400</td>
<td>0.410</td>
</tr>
<tr>
<td>Uncinate fasciculus (UNC)</td>
<td>0.287</td>
<td>0.282</td>
<td>0.289</td>
</tr>
<tr>
<td>Genu of the corpus callosum (GCC)</td>
<td>0.578</td>
<td>0.588</td>
<td>0.591</td>
</tr>
<tr>
<td>Splenium of the corpus callosum (SCC)</td>
<td>0.581</td>
<td>0.585</td>
<td>0.590</td>
</tr>
</tbody>
</table>

4 Values in parentheses are standard error times 105. Brackets contain two-sided p-value in pairwise comparison vs. controls. p-values were not corrected for multiple comparisons.

5 Combination of the CON-SIB and CON groups.

6 The columns of the fornix are also known as the anterior pillars or fornicolorum, and are grouped together with the body of the fornix as a tract labeled “Fx” in the “Eve” atlas. The crus (crura) of the fornix are also known as the posterior pillars, and are not distinguishable from the stria terminals in the region of the hippocampus at the imaging resolution of the current study. The tract that we call FXcrus in this paper is labeled “Eve” in the “Eve” atlas. The crus (crura) of the fornix are also known as the posterior pillars, and are not distinguishable from the stria terminals in the region of the hippocampus at the imaging resolution of the current study.

In that regard, our study adds an important additional set of data to what is currently still a small literature on FA in family members of individuals with schizophrenia. In particular, the current study is only the third in which the family members were restricted solely to siblings (cf. Boos et al., 2013; Hao et al., 2009), which yields a more homogenous sample as regards potential age and environmental confounds.

We found only marginal evidence for FA abnormalities in young individuals with schizophrenia. Namely, a 5% decrease in FA in FXcrus in SCZ relative to controls (effect size = -0.52) for which the p-value (p=0.016) would not survive correction for the number of investigated tracts. This result itself warrants caution, as the fornix is susceptible to partial volume artifacts with cerebral spinal fluid. Various reviews have noted the inconsistency and heterogeneity of DTI results in SCZ (Kanaan et al., 2005; Kyriakopoulos et al., 2008; White et al., 2008; Kyriakopoulos and Frangou, 2009; Peters et al., 2010; Melonakos et al., 2011). Notably, the sample size in the present study is comparable to (or larger than) those in many of the other studies that have reported FA reductions in various tracts in SCZ. In addition, the specific analytical approach used in this study has been validated and used successfully in other studies (Ceritoglu et al., 2009; Oishi et al., 2009; Farla et al., 2010; Farla et al., 2011). Nonetheless, it is possible that a different analytical approach, such as tract-based spatial statistics (TBSS; Smith et al., 2006) or automated tractography (e.g., TRACULA; Vendiki et al., 2011) might have revealed more group differences. Approaches that may be better equipped to handle heterogeneity in the location of white abnormalities across subjects (e.g., “pothole” approaches; White et al., 2013; Mayer et al., 2014) also warrant careful cross-methodological comparison and may provide a mechanism to relate different spatial profiles of abnormalities to differing disease subtypes. Another possibility for the negative findings in the current study is that FA decreases may have a progressive component (Rosenberger et al., 2008; Kochunov et al., 2013) and may be either absent or less robust in recent-onset schizophrenia. However, true longitudinal studies (in the same subjects) of FA in schizophrenia are needed, and the evidence for differential FA results between first episode and chronic schizophrenia is itself quite mixed (White et al., 2008; Kyriakopoulos and Frangou, 2009; Peters et al., 2010; Melonakos et al., 2011). Overall, the results of the current study are consistent with the idea that reported FA reductions in schizophrenia are more likely related to disease state than genetic risk for the disorder.

Knochel, C., glahn, d.c., li, x., welder, l., Rowland, l.m., olvera, r.l., welder, l., Sampath, H., Carpenter, W.T., Duggirala, R., curran, J., Blangero, J., Hong, L.E. 2013. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biological Psychiatry 73, 482–491.

